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Abstract

The synthetic control estimator is widely used to evaluate aggregate-level policies,
but researchers increasingly face settings with rich, disaggregated data (e.g., county-level
outcomes within states) that raise new questions about aggregation choice. Existing ap-
proaches incorporate such data by estimating separate synthetic controls for each dis-
aggregated treated unit, enlarging the donor pool with disaggregated control units, or
both. These strategies can improve fit but also amplify noise, with little guidance on
how to balance these trade-offs. This paper develops a general framework for synthetic
control with disaggregated data that nests the classical synthetic control estimator and
other existing approaches. Within this framework, I propose a multi-level SC (mlSC)
estimator that formalizes the aggregation choice as a data-driven regularization prob-
lem. The estimator flexibly regularizes toward the classical synthetic control estimator
while exploiting additional variation from the disaggregated data. In simulations cal-
ibrated to four empirical settings, mlSC matches or outperforms existing approaches.
Two applications—Minnesota’s cigarette tax and minimum wage effects on teen employ-
ment—illustrate its practical value.
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1 Introduction

Synthetic control (SC) estimators have become a central tool for policy evaluation, partic-

ularly for assessing the impact of aggregate-level interventions, like state-wide policies, on a

single, aggregated unit, like a state (see Abadie and Gardeazabal, 2003; Abadie, Diamond, and

Hainmueller, 2010, 2015). Athey and Imbens (2019) describe the SC estimator as "arguably

the most important innovation in the evaluation literature in the last fifteen years." Its appeal

lies in constructing a transparent, data-driven counterfactual for the treated unit. This coun-

terfactual is a convex combination of units from a donor pool of similar, untreated control

units that approximates the treated unit’s outcome path in the absence of the intervention.

This approach is especially valuable in panel data settings with a small number of aggre-

gated units, where traditional methods that rely on asymptotics for a large number of units

are less reliable (Doudchenko and Imbens, 2016).

Yet little guidance exists on whether and how the SC estimator could leverage data

measured at levels below the treatment assignment, hereafter termed disaggregated data.

For instance, state-wide policies are commonly studied using metropolitan, county, or even

individual-level data (see, e.g., Card and Krueger, 1994; Dube and Zipperer, 2015; Deng and

Zheng, 2023). In these settings, researchers must decide whether to apply SC to aggregated

outcomes, to disaggregated outcomes, or to a combination of both, while still targeting the

treatment effect at the aggregate level. This choice is consequential. Using disaggregated

data can change estimated effects and, in turn, the economic conclusions drawn from a study.

On the one hand, it can improve precision by exploiting additional cross-sectional variation.

This advantage is magnified in classical SC settings, where the small number of time peri-

ods and aggregated units means that the gains from incorporating disaggregated data can

be substantial. On the other hand, disaggregation introduces risks of overfitting and non-

uniqueness when the donor pool greatly exceeds the number of pre-treatment periods (see,

e.g., Abadie, 2021; Abadie and L’Hour, 2021; Pouliot and Xie, 2022). Thus, the key question is

how to exploit the additional information in disaggregated data while maintaining credible
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and stable estimates.

In this paper, I develop a general framework for synthetic control estimators that system-

atically incorporates disaggregated data and propose the multi-level SC (mlSC) estimator.

The framework nests existing approaches, ranging from full aggregation (classical SC) to full

disaggregation of treated and/or control units. The mlSC estimator formalizes the choice of

aggregation as a data-adaptive penalization scheme. The estimator leverages the flexibility of

SC weights to incorporate disaggregated control unit information while regularizing toward

the classical SC estimator. In simulations calibrated to four real data sets, mlSC performs

well relative to classical SC and its disaggregated variants. In two empirical applications, I

demonstrate that my estimator adapts to the data structure in a fully data-driven manner,

delivering precise and credible treatment effect estimates without an a priori aggregation

decision.

When using disaggregated data, applied researchers face a choice over the aggregation

level of treated and control units and commonly implement several SC variants that use

different disaggregated data to estimate the aggregate-level treatment effect. These range

from full aggregation to full disaggregation of the treated unit, the control units, or both.

Each variant corresponds to a special case within my general framework. Disaggregating the

treated unit typically entails constructing a synthetic control for each disaggregated treated

unit separately (Abadie and L’Hour, 2021), while disaggregating the control units expands

the donor pool to include all disaggregated control units.

Throughout most of my paper, I focus on disaggregating the control units, which can sub-

stantially improve aggregate-level estimation precision. Simulations show that disaggregat-

ing the controls is the primary driver of better out-of-sample performance for SC estimators

using disaggregated data, especially when the outcome is less noisy. Expanding the donor

pool increases estimator flexibility, providing more opportunities to find suitable matches for

the (aggregated or disaggregated) treated unit (see, e.g., Hanushek et al., 2023; Kreif et al.,

2016).

The improvement from disaggregated controls depends critically on the trade-off be-

2



tween added flexibility and increased noise. Disaggregated controls are inherently nois-

ier than their aggregated counterparts. For example, county-level idiosyncratic shocks are

averaged out in the state-level outcomes. Thus, expanding the donor pool also raises the

risk of overfitting and high-dimensionality problems, especially when the number of control

units exceeds the number of pre-treatment periods (Pouliot and Xie, 2022). Consequently,

aggregate-level precision improves most when disaggregated controls contain meaningful

signal relative to noise. To formalize this intuition, I derive a theoretical MSE decomposition

based on a hierarchical linear latent factor model. The decomposition separates the post-

treatment error into four components: oracle bias (common to all estimators), restriction

bias (arising from aggregation), estimation error, and post-treatment noise. This framework

clarifies that the central trade-off is not the standard bias–variance trade-off, but rather one

between flexibility and noise sensitivity.

I propose the multi-level SC (mlSC) estimator that navigates this trade-off in a data-

driven way using a hierarchical penalization approach. The estimator augments the SC

objective with a penalty term that shrinks the control disaggregated SC, which only dis-

aggregates the control units, toward the classical SC solution, reflecting the hierarchical data

structure. The magnitude of the penalty balances flexibility against the risk of overfitting: a

large penalty favors the classical SC, while a small penalty leverages disaggregated control

information when pre-treatment fit gains due to increased flexibility outweigh noise. The

penalty parameter can be chosen via cross-validation over time or a theoretically motivated

heuristic, letting the data determine the optimal level of aggregation.

In simulations calibrated to four empirical datasets, I demonstrate that the mlSC estima-

tor outperforms the classical SC estimator and generally matches or outperforms the control

disaggregated SC. The simulations model outcomes with a hierarchical linear factor struc-

ture and assign treatment based on observed policies to reflect realistic interventions. I fur-

ther show that the performance gains from using disaggregated data depend critically on

the noise level in the data. The disaggregated data helps most in settings where the noise

level is low. The mlSC estimator gains most over the classical SC and the naive SC variants
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at moderate noise levels, where it can extract the additional signal from disaggregated units

without overfitting the noise.

I illustrate the practical utility of the mlSC estimator using two empirical studies evalu-

ating state-level policies with disaggregated data (see Deng and Zheng, 2023; Callaway and

Sant’Anna, 2021). These examples demonstrate how mlSC adaptively selects the optimal de-

gree of aggregation based on the characteristics of the underlying data. The original authors

made opposing choices: Deng and Zheng (2023) aggregate their grocery store-level data to

the state level for their analysis, while Callaway and Sant’Anna (2021) use county-level data

directly. In both applications, mlSC selects an intermediate degree of aggregation that yields

treatment effects that differ from both the classical SC and control disaggregated SC, high-

lighting the importance of data-driven aggregation in policy evaluation.

Finally, I consider the complementary question of disaggregating the treated unit and

I show that this dimension offers limited additional value for aggregate-level estimation.

Disaggregating the treated unit reduces flexibility since replicating the aggregated outcome

is generally simpler than replicating each disaggregated component separately. When the

estimand is at the aggregate level, it is therefore natural to target the aggregate directly. Sim-

ulations show that disaggregating the treated unit alone typically worsens out-of-sample

performance; small improvements occur only when the control units are disaggregated cor-

respondingly. Nonetheless, treated-unit disaggregation can be valuable for studying alter-

native estimands, such as treatment effect heterogeneity, which cannot be investigated when

the treated unit remains fully aggregated.

Related work. My paper contributes to the literature on the synthetic control estimator

by intersecting two recent and prominent research directions; see Abadie (2021) for a re-

cent review. The first direction addresses the estimator’s bias, for example induced by the

challenge of imperfect pre-treatment fit in the classical, aggregate-data settings. Standard

solutions modify the SC estimator, for example by de-biasing it or relaxing constraints to al-

low extrapolation (see, e.g., Doudchenko and Imbens, 2016; Chernozhukov, Wüthrich, and
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Zhu, 2018; Ferman and Pinto, 2021; Ben-Michael, Feller, and Rothstein, 2021; Kellogg et al.,

2021; Abadie and L’Hour, 2021; Sun, Ben-Michael, and Feller, 2025). My paper tackles the

same challenge by improving pre-treatment fit through a systematic incorporation of disag-

gregated data rather than modifying the estimator.

The second direction focuses on leveraging disaggregated data in SC settings, typically

for purposes distinct from aggregate-level estimation. One line explores temporal disaggre-

gation to exploit high-frequency data (Sun, Ben-Michael, and Feller, 2024). Another line,

focusing on unit-level disaggregation, has pursued three distinct goals. The first is to eval-

uate interventions in inherently granular settings, where treatment may also be assigned at

the disaggregate level (see, e.g., Robbins, Saunders, and Kilmer, 2017; Abadie and L’Hour,

2021; Shen, Song, and Abadie, 2025). The second is to estimate new estimands, such as distri-

butional or heterogeneous effects (e.g., Chen, 2020; Gunsilius, 2023). The third is to provide

a theoretical foundation for the classical (aggregate) SC estimator by deriving its properties

from a fine-grained, individual-level model (Shi et al., 2022). Distinct from these approaches,

my paper formalizes and analyzes the use of disaggregated data in the classical SC setting,

that is, for estimating an aggregate-level effect in settings with a limited number of aggre-

gated units. In doing so, it provides a systematic, theoretically grounded framework for an

approach that has previously seen informal use in empirical research (see, e.g., Kreif et al.,

2016; Deng and Zheng, 2023; Hanushek et al., 2023).

2 General Set-Up for Incorporating Disaggregated Data

To set up the discussion of the choices for the SC estimator with disaggregated data, I in-

troduce the standard potential outcomes framework and adapt it for disaggregated data.

Treatment assignment is assumed to be at the aggregate level. Moreover, the estimand of

interest is the aggregate level effect, which is simply the population weighted average of the

treatment effects at the disaggregate level.

I adopt the standard Rubin potential outcomes framework (see, e.g., Rubin, 1974; Imbens

and Rubin, 2015). Suppose a panel of S + 1 aggregated units, e.g. states, is observed over
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T time periods. Each aggregated unit consists of Cs disaggregated units, e.g. counties. Re-

call from the introduction that disaggregated data refers to any unit-level below the level of

treatment assignment. Let Ysct denote the disaggregated outcome for disaggregated unit c in

aggregated unit s at time t and Yst be the corresponding aggregated outcome. Assume that

each aggregated unit is a weighted average of its disaggregated components, i.e.

Yst =
Cs

∑
c=1

vsc Ysct,

where vsc denote the aggregation weights. It is important that ∑Cs
c=1 vsc = 1 to retain inter-

pretability of the synthetic control at all aggregation stages. One example of weights could

be simple averages, e.g. vsc =
1

Cs
.

Let Ysct(0) and Yst(0) denote the potential outcomes in absence of treatment and Ysct(1)

and Yst(1) the potential outcome in presence of treatment, for the disaggregated and aggre-

gated outcome respectively. Assume that treatment is binary and assigned at the aggregated

level. As in many SC settings, attention is restricted to a single aggregated treated unit1,

which is assigned treatment in period T0 + 1 that never turns off, i.e.

Wsct =


1, ∀c = 1, ..., Cs, s treated, ∀t > T0

0 else

The binary treatment indicator can be equivalently defined at the aggregate level, Wst. Over-

all, the observed outcomes on the disaggregate level can be written as

Ysct =


Ysct(1) if Wsct = 1

Ysct(0) if Wsct = 0

1In the typical SC setting, only a single aggregated unit is treated. If there are multiple treated units, they are
either (1) aggregated to a single treated unit or (2) a synthetic control is found separately for each of them (see,
e.g., Abadie and L’Hour, 2021). Oftentimes, multiple treated units arise in settings with staggered adoptions
which can be accommodated in the synthetic control framework (see, e.g., Ben-Michael, Feller, and Rothstein,
2022; Athey and Imbens, 2022).
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The observed outcomes at the aggregate level follow as expected. The setting in this

paper focuses on the setting without covariates, similarly to Doudchenko and Imbens (2016)

and Ferman and Pinto (2021).

The estimand of interest is the average treatment effect on the aggregated treated unit.

Without loss of generality, assume the aggregated treated unit is s = 0. The Stable Unit

Treatment Value Assumption (SUTVA) is assumed to hold at the disaggregate level, so there

is no interference between disaggregated units. Then, the treatment effect at the aggregate

level can be written as

τ =
1

T − T0 + 1

T

∑
t=T0+1

τ0t

=
1

T − T0 + 1

T

∑
t=T0+1

(Y0t(1)−Y0t(0))

=
1

T − T0 + 1

T

∑
t=T0+1

C0

∑
c′=1

v0c′ (Y0c′t(1)−Y0c′t(0))

3 Incorporating Disaggregated Data: Choices for the SC Es-

timator

When disaggregated data is available, applied researchers face a common choice in the SC

setting: at what level of aggregation should the estimator operate? This choice arises in two

places: (1) outcome for the treated unit and (2) outcomes for the control units. These two

dimensions yield four possible data configurations, each with distinct implications for esti-

mator performance. This section provides a structured discussion of these choices and their

practical relevance. I illustrate the intuition behind the main trade-offs involved through a

stylized example.
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3.1 Synthetic Control Estimator and The Choice of Aggregation

The goal of the SC estimator is to obtain a precise estimate of the treatment effect on the

treated by accurately approximating the unobserved aggregated treated unit’s potential out-

come in absence of treatment, Y0t(0):2

τ̂0t = Y0t − Ŷ0t(0).

As introduced by Alberto Abadie and co-authors (see, e.g., Abadie and Gardeazabal,

2003; Abadie, Diamond, and Hainmueller, 2010, 2015), the classical SC estimator uses data

aggregated to the level of treatment. The estimator estimates the unobserved potential out-

come as follows:

Ŷ0t(0) =
S

∑
s=1

ωs Yst ∀ t ≥ T0,

where ωs is chosen s.t.

arg min
ωs∈RS

T0

∑
t=1

(Y0t −
S

∑
s=1

ωsYst)
2

s.t.
S

∑
s=1

ωs = 1, ωs ≥ 0 ∀ s = 1, ..., S.

(3.1)

Intuitively, the estimator constructs a synthetic version of the aggregated treated unit

using a convex combination of a donor pool of units similar to the aggregated treated unit

that did not experience the same intervention. Selecting an appropriate donor pool is a cru-

cial step in this estimation process, as it determines the quality of the counterfactual and

the credibility of the resulting treatment effect estimates (see, e.g., Abadie, Diamond, and

Hainmueller, 2010; Doudchenko and Imbens, 2016; Ferman and Pinto, 2021).

Disaggregated data can be incorporated into the classical SC estimator in two key ways:

(1) disaggregating the outcomes for the treated unit, Y0t, and (2) disaggregating the outcomes

for the control units, Yst. A natural first approach to disaggregating the treated unit is to

2Recall that the estimand is the treatment effect on the treated, hence Y0t(1) is observed.
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construct separate SC estimators for each disaggregated treated unit (e.g., each county within

a treated state) (see, e.g., Abadie and L’Hour, 2021; Ben-Michael, Feller, and Rothstein, 2022).

Conversely, disaggregating control units involves expanding the donor pool to include all

disaggregated control units, rather than just the aggregated outcomes.

For expositional clarity, this paper focuses on a simplified case with two levels of aggre-

gation. In practice, however, many more choices are possible. If individual-level data are

available, one could aggregate outcomes at various intermediate levels—households, cities,

counties, metropolitan areas, or states.

Focusing on two aggregation levels yields four possible data configurations, three of

which are commonly used in practice (see Table 1).3 The classical SC estimator corresponds

to the aggregated treated/aggregated control quadrant. Some researchers adopt this config-

uration even when disaggregated data are available, reasoning that disaggregated data is too

noisy or policy treatment occurs at the aggregate level and thus the analysis should match it

(e.g., Deng and Zheng, 2023; Pac et al., 2019). More explicitly, Pac et al. (2019, NBER paper

version) state that "to employ my primary synthetic control model estimation method, the

unit of observation must be the same as the level of the policy change. Accordingly, we ag-

gregate individuals into state-year cells based on the family’s state of residence at the survey

date and the year of the child’s birth".

Table 1: Synthetic Control with Disaggregated Data in Practice

Control Units
Aggregated Disaggregated

Aggregated Classical SC Estimator Control Disaggregated SC
e.g. Deng and Zheng (2023) e.g. Kreif et al. (2016)

Treated Unit

Disaggregated Treated Disaggregated SC Fully Disaggregated SC
not common e.g. Hanushek et al. (2023)

3Within the SC paradigm, if I am interested in the average treatment effect on the treated aggregated unit,
it makes sense to directly target the overall aggregated unit in-sample if that is my objective out-of-sample,
especially when the control units are not disaggregated. More details can be found in Section 4.
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Some researchers, such as Kreif et al. (2016), aggregate the treated unit but keep the con-

trols disaggregated (top-right quadrant: aggregated treated/disaggregated controls). This

reflects a common intuition to follow Abadie, Diamond, and Hainmueller (2010) in pool-

ing the multiple disaggregated treated units to estimate a single synthetic control for the

aggregate while retaining disaggregated controls to preserve enough variation for a flexible

counterfactual fit. As the authors note, fully aggregating the controls into their respective re-

gions “would leave insufficient power to detect whether there was a statistically significant

treatment effect.”

Other researchers, such as Hanushek et al. (2023), go one step further by disaggregating

both the treated and control units (bottom-right quadrant: disaggregated treated/disaggregated

controls). This choice reflects the idea that using disaggregated units can both preserve im-

portant local variation and ensure that treated and control units are compared at the same

level of aggregation. As the authors explain, conducting the analysis at the school rather

than district level “recognizes the substantial variation in school quality within districts and

dampens the impact of the reform efforts or challenges of other districts.”

While applied researchers often face the task of selecting an appropriate level of aggrega-

tion, there is little formal guidance to inform this decision. Aggregating treated units reduces

noise in outcomes by smoothing out idiosyncratic errors and aligns the analysis with the pol-

icy’s level of implementation. However, aggregation sacrifices meaningful variation at the

disaggregate level, such as differences across schools or counties. In contrast, disaggregation

preserves this local variation and can improve fit of the synthetic control. At the same time,

it increases sensitivity to random noise, risking overfitting. The choice is therefore a crucial

balance between capturing informative variation and maintaining stable, reliable estimates.

3.2 The Choice of Aggregation: A Stylized Example

In this subsection, I preview the trade-off for the two dimensions of disaggregation I consider

in this paper through a simple, stylized example. There are two key aspects to the trade-off:

flexibility and overfitting due to additional noise in the estimation procedure.
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First, I focus on the flexibility of the estimator. Consider an example with four states

that serve as the aggregated units (Arizona, AZ, California, CA, New York, NY, and Illinois,

IL) and three time periods (t ∈ {1, 2, 3}), where treatment at time period t = 3 is assigned

to a single aggregated unit, CA. Moreover, each state consists of two counties, representing

the disaggregate level of analysis. my goal is to estimate the treatment effect on California

in period 3. In this setting, I compare the two dimensions of disaggregation. Recall that,

when I disaggregate the control units, my SC estimator uses all counties as donors. When

I disaggregate the treated unit, my SC estimator finds a synthetic control for each treated

county separately.

Disaggregation of the control states. Figure 1, panel (a) shows the convex hull formed

by the control states in two pre-treatment periods (shaded blue area). The SC estimator

assigns convex weights to these three states, allowing it to perfectly match any treated unit

that lies within this convex hull. Since CA lies outside the convex hull, the SC estimator

cannot perfectly replicate CA’s pre-treatment outcomes. In contrast, panel (b) displays the

convex hull formed by the control counties, which are the disaggregated units, in the same

two periods. With access to six counties, the SC estimator now has more flexibility, assigning

weights across a larger donor pool. As a result, it is able to construct a synthetic CA that

exactly matches the observed pre-treatment outcomes, something that was not possible using

the aggregated state-level data.4

Disaggregating the treated unit. In Figure 2, panel (a), the treated aggregated unit CA

now lies inside the convex hull formed by the state-level controls, enabling a perfect match

and synthetic control. In panel (b), I disaggregate the treated state. In this case, a separate

SC estimator is constructed for each treated county. While one county (CA2) still lies inside

the convex hull and can be matched perfectly, the other one (CA1) does not. As a result,

disaggregation of the treated state prevents us from replicating CA’s average pre-treatment

4If CA were already inside the convex hull formed by the control states, the disaggregation would result in
no change. If the states are disaggregated differently such that the convex hull formed by them does not include
CA, it would at least find a closer match in terms of pre-treatment outcomes to CA than the states.
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Y1

Y2

AZ

NY

IL

CA

(a) Pre-treatment outcomes Yt. Convex hull
spanned by outcomes on state-level.

Y1

Y2

AZ

NY

IL

NY1

NY2

IL1

IL2

AZ1

AZ2

CA

(b) Pre-treatment outcomes Yt. Convex hull
spanned by outcomes on county-level.

Figure 1: Disaggregating the control units. Four-aggregated unit, six-disaggregated unit,
three-period example. Treated aggregated unit (red triangle): CA.

outcomes exactly. 5

Y1

Y2

AZ

NY

IL

CA

(a) Pre-treatment outcomes. Convex hull
spanned by outcomes on state-level.

Y1

Y2

AZ

NY

IL

CA

CA1

CA2

(b) Pre-treatment outcomes. Convex hull
spanned by outcomes on state-level.

Figure 2: Disaggregating the treated unit. Four-aggregated unit, six-disaggregated unit,
three-period example. Treated aggregated unit (red triangle): CA.

Together, these examples highlight the asymmetry in how disaggregation affects the per-

formance of the SC estimator. Disaggregating control units expands the convex hull, increas-

5This follows from Jensen’s inequality: it is generally easier to fit the average of components than to fit each
component individually. If both treated counties remain within the convex hull, disaggregation would not
affect replicability.
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ing flexibility and fit. Disaggregating the treated unit, in contrast, may reduce flexibility by

making each component harder to replicate. These opposing forces make the performance

of a fully disaggregated estimator ambiguous and highly data-dependent.

The second part of the trade-off concerns the role of noise in the estimation procedure.

While closely matching pre-treatment outcomes is essential for constructing a good synthetic

control, those outcomes typically contain idiosyncratic random noise, such as classical mea-

surement error. Disaggregated units, like counties, are noisier than their aggregated counter-

parts, like states, due to the hierarchical structure of the data. The expansion of the convex

hull in Figure 1 could simply be driven by this idiosyncratic noise rather than systematic

variation, causing overfitting to pre-treatment noise and poor post-treatment performance.

Thus, it becomes crucial to distinguish between genuine signal and random noise in the dis-

aggregated outcomes when deciding whether and how to incorporate disaggregated data

into the estimator.

Ultimately, these examples underscore that the choice of aggregation level is both data-

and context-dependent. It is shaped not only by the geometric relationship between the

treated unit(s) and the control units in outcome space but also by the balance between noise

and information in the disaggregated data. When disaggregation expands the donor pool in

a way that captures meaningful variation, it can improve estimation. But when it primarily

amplifies noise, it can worsen performance.

4 A General SC Estimator For All Aggregation Levels

In this section, I introduce a general class of SC estimators for disaggregated data, character-

ized by the weight matrix over which the estimator optimizes. This class provides a unifying

framework accommodating any combination of aggregation and disaggregation. In particu-

lar, different restrictions on the weight matrix recover the four cases of full aggregation and

full disaggregation for treated and control units discussed in Section 3, including the classical

SC estimator as a special case.

The disaggregated general SC (dGSC) estimator is defined by a weight matrix, Wc′sc ∈
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RC0·∑S
s=1 Cs , where c′ refers to treated disaggregated unit c′ and s and c refer to a disaggregated

unit c contained in the aggregated control unit s. This weight matrix has dimension C0 ·

∑S
s=1 Cs, where C0 is the number of disaggregated units contained in treated aggregated unit

0 and ∑S
s=1 Cs is the total number of disaggregated control units. For aggregated treated unit

0, the estimator has the form

τ̂dGSC
0t =

C0

∑
c′=1

vsc′

(
Y0c′t −

S

∑
s=1

Cs

∑
c=1

Wc′scYsct

)
,

where the weights Wc′sc are chosen to solve the following optimization problem:

arg min
Wc′sc∈R0

T0

∑
t=1

C0

∑
c′=1

v0c′ (Y0c′t −
S

∑
s=1

Cs

∑
c=1

Wc′scYsct)
2, (4.1)

whereR0 = {Wc′sc | ∑S
s=1 ∑Cs

c=1 Wc′sc = 1 ∀c′ and Wc′sc ≥ 0 ∀c′, c, s 6= 0}. R0 incorporates

the convexity constraints on the weights following the classical SC estimator restrictions in

Equation 3.1. These two restrictions limit extrapolation and enhance interpretation through

sparsity. Moreover, they serve as an implicit regularizer in (close to) high-dimensional set-

tings. The dGSC estimator differs from other SC estimators with disaggregated data such

as distributional SC (see, e.g., Chen, 2020; Gunsilius, 2023) in one important aspect: I focus

solely on matching the mean as opposed to the entire distribution which matches the treated

and control units also on higher-order moments.

Building on this general framework, I identify three aggregation edge cases that result

from imposing specific restrictions on the feasible set of weight matrices R0. The dGSC es-

timator introduced in Equation 4.1 corresponds to the case in which both the treated and

control units are disaggregated. A complete overview of these estimators and their corre-

sponding aggregation structures is provided in Table 2.

The first estimator is the dGSC-AA6 estimator, which aggregates treated and control

6dGSC-AA: dGSC-Aggregate Aggregate. The naming convention lists the aggregation level of the treated
unit first and then the aggregation level of the control units.
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Table 2: dGSC estimator comparison.

dGSC-AA dGSC-AD dGSC-DA dGSC

Uniform weights for all c Yes No Yes No
within aggregated control unit s

Uniform weights for all c′ Yes Yes No No
within aggregated treated unit 0

Estimators: dGSC-AA: aggregated data for treated and control; dGSC-AD: aggregated data for treated, dis-
aggregated data for control; dGSC-DA: disaggregated data for treated, aggregated data for control; dGSC:
disaggregated data for treated and control

units, corresponds to

RdGSC−AA = {Wc′sc ∈ R0 |
Wc′sc1

Wc′sc2

=
vsc1

vsc2

∀c1, c2 ∈ Cs, ∀s and Wc′1sc = Wc′2sc ∀c′1, c′2 ∈ C0, ∀s, c}.

The first set of restrictions forces all weights for disaggregated units c within an aggregated

control unit s to be equal. The second set of restrictions forces the weights to also be the same

for each disaggregated treated unit c′.

Remark The dGSC-AA optimization problem enforces multiple types of equality constraints

on the full weight matrix Wc′sc: (i) within-aggregated control units equality, (ii) across disag-

gregated treated units equality and (iii) convexity of the weights. An alternative characteriza-

tion of the optimization problem, given linear formulations of the constraints in RdGSC−AA,

is given by its Lagrangian

LdGSC−AA(W, Λ, Γ, {λc′}, M) =
T0

∑
t=1

C0

∑
c′=1

v0c′ (Y0c′t −
S

∑
s=1

Cs

∑
c=1

Wc′scYsct)
2

+ ∑
c′,s,c

Λ1
c′sc(Wc′sc − vsc

Cs

∑
c=1

Wc′sc]) + ∑
c′,s,c

Λ2
c′sc(Wc′sc −

C0

∑
c′′=1

v0c′′Wc′′sc)

+
C0

∑
c′=1

γc′(1−
S

∑
s=1

Cs

∑
c=1

Wc′sc)− νc′scWc′sc,

where Λ2
c′sc and Λ2

c′sc are Lagrange multipliers enforcing the additional constraints inRdGSC−AA

and γc′ and νc′sc enforce the convexity constraints in R0. This formulation imposes the con-
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straints exactly for the dGSC-AA estimator. I can similarly characterize the other special

cases that follow.

The second estimator, dGSC-AD, which corresponds to only disaggregating the control

units, is given by

RdGSC−AD = {Wc′sc ∈ R0 |Wc′1sc = Wc′2sc ∀c′1, c′2 ∈ C0}.

This restriction enforces equality of weights across all disaggregated treated units, while al-

lowing weights for disaggregated control units to vary freely within the constraints of R0.

Note that the dGSC-AA estimator is a special case of dGSC-AD, obtained by imposing one

additional restriction on the weight matrix. To address potential non-uniqueness in high-

dimensional settings, I include a small L2 penalty (see, e.g., Shen et al., 2023; Spiess, Venu-

gopal et al., 2023).

The third edge case estimator, dGSC-DA, corresponds to only disaggregating the treated

unit (dGSC-DA) and is given by

RdGSC−DA = {Wc′sc ∈ R0|
Wc′sc1

Wc′sc2

=
vsc1

vsc2

∀c1, c2 ∈ Cs}.

This restriction enforces equal weights across all disaggregated units within each aggregated

control unit while allowing each disaggregated treated unit to have its own synthetic control.

The optimization problem for the dGSC estimator differs from the classical SC estimator

in Equation 3.1 in two key ways: it uses a weight matrix instead of a vector, and it sums over

disaggregated treated units outside the squared pre-treatment error. Despite these differ-

ences, the dGSC class is flexible enough to recover all four combinations of full aggregation

and disaggregation for treated and control units introduced in Section 3 (see Table 1 for an

overview).

Proposition 1. For allR ⊆ RdGSC−AD, the dGSC optimization problem in Equation 4.1 is equiva-

lent to the classical SC optimization problem in Equation 3.1, differing only in the selection of units
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included in the donor pool.

Appendix A.1 contains the proof. The key insight is that, once equal weights are imposed

across disaggregated treated units, the additional summation over these units outside the

squared pre-treatment error does not change the solution.

Corollary 1. Imposing RdGSC−AA for the dGSC estimator, which additionally restricts all weights

within each aggregated control unit to be equal, recovers the classical SC estimator.

Remark The objective function of the classical SC estimator is commonly motivated as the

sample analogue of the expected out-of-sample mean-squared error for the aggregate treat-

ment effect on the treated unit. Proposition 1 shows that, within the dGSC class, this interpre-

tation holds only if the weights for all disaggregated units within the aggregated treated unit

are constrained to be equal, thus keeping the treated unit at the aggregate level. This restric-

tion ensures that the dGSC estimator is targeting the same out-of-sample loss as the classical

SC estimator for the aggregate-level treatment effect. A key implication of this result is that,

when the estimand remains the standard treatment effect on the treated aggregated unit, the

potential gains from disaggregation primarily arise from disaggregating the control units

rather than the treated unit itself. These insights align with the findings of Arkhangelsky

et al. (2021) and Ben-Michael, Feller, and Rothstein (2022).

Remark Another widely used estimator in panel data settings is the difference-in-differences

(DiD) estimator (Ashenfelter and Card, 1984; Card, 1990; Card and Krueger, 1994). Follow-

ing Doudchenko and Imbens (2016), the DiD estimator can be expressed within the general

dGSC framework by modifying the optimization problem in Equation 4.1 in two ways: (1)

adding an intercept term, µdid, to capture level differences across treated and control units,

and (2) constraining all weights to be uniform across the control units for each treated unit.

Under these restrictions, the DiD estimator using aggregated data, DiD (aggregate), assigns

weight ŵdid,agg
s = 1

S to each aggregated control unit and estimates the intercept µ̂did based

on the aggregated treated unit. The DiD estimator using disaggregated data, DiD (disaggre-

gate), assigns weight ŵdid,disagg
sc = 1

∑s Cs
to each disaggregated control unit and estimates the
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intercept based on the simple average across all disaggregated treated units. Whether this av-

erage coincides with the aggregated treated outcome depends on the population weights vsc

applied in constructing the data. While the intercept adds flexibility, the uniform (non–data-

driven) weights, proportional to the number of control units, limit the estimator’s ability to fit

pre-treatment outcomes and can result in substantial efficiency loss. Furthermore, the credi-

bility of the DiD estimator relies on the parallel trends assumption, which often fails in em-

pirical applications (Athey and Imbens, 2006; Freyaldenhoven, Hansen, and Shapiro, 2019;

Kahn-Lang and Lang, 2020; Arkhangelsky et al., 2021; Ghanem, Sant’Anna, and Wüthrich,

2022; Roth, 2022; Rambachan and Roth, 2023; Arkhangelsky and Hirshberg, 2023). Because

DiD weights are not data-driven, the level of aggregation has a smaller impact on estimation

precision than in synthetic control, where weights are explicitly fitted to outcome trends.

Further discussion of disaggregation for the DiD estimator is provided in Appendix H.

5 Leveraging All Aggregation Levels: The Multi-Level SC

Estimator

In this section, I introduce the multi-level SC (mlSC) estimator, which leverages all levels of

aggregation to select an estimator within the general dGSC framework in a data-driven way.

The mlSC estimator reframes the a priori choice of aggregation as a penalization problem by

introducing hierarchical penalty terms. This structure captures the hierarchical nature of the

data and allows the estimator to recover the four cases discussed in Section 4 or any inter-

mediate mixture, depending on the strength of the penalization. In this paper, I focus on the

version that keeps the treated unit at the aggregate level while allowing flexible aggregation

among the control units. I then discuss two practical approaches for obtaining a feasible

estimator.

5.1 Multi-Level SC Estimator

The mlSC estimator builds on the Lagrangian formulation of the dGSC-AA, dGSC-AD and

dGSC-DA estimators from Section 4. Unlike those estimators, which fix the level of aggre-
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gation for units a priori by imposing hard equality constraints on the weights, the mlSC

replaces these constraints with quadratic penalty terms. This soft penalization allows for the

appropriate degree of aggregation to be determined in a data-driven way.

Formally, the mlSC estimator is defined as:

arg min
Wc′sc∈R0

T0

∑
t=1

C0

∑
c′=1

v0c′ (Y0c′t −
S

∑
s=1

Cs

∑
c=1

Wc′scYsct)
2

+ λ1 ·
C0

∑
c′=1

S

∑
s=1

Cs

∑
c=1

(Wc′sc − vscWc′s,·)
2

+ λ2 ·
C0

∑
c′=1

S

∑
s=1

Cs

∑
c=1

(Wc′sc − W̄·,sc)
2,

(5.1)

where Wc′s,· = ∑Cs
c=1 Wc′sc is the aggregate weight in aggregated control unit s for disaggre-

gated treated unit c′ and W̄·,sc = ∑C0
c′′=1 v0c′′Wc′′sc is the average weight for disaggregated

control unit c in aggregated control unit s.

The two penalty parameters, λ1 and λ2, correspond to the linear formulations of the

constraints in RdGSC−AA and control how strongly the estimator is pulled toward full ag-

gregation. Fixing the aggregation level a priori is equivalent to setting these parameters to

specific values, which may unnecessarily restrict the estimator. In contrast, because the SC es-

timator inherently combines information across multiple control units to predict the missing

counterfactual outcome Ŷ0T(0) for treatment effect estimation, selecting λ1 and λ2 from the

data can improve out-of-sample performance and help approximate the optimal penalties λ∗1

and λ∗2 , which optimize out-of-sample performance λ∗1 , λ∗2 = arg minλ1,λ2 E[∑C0
c′=1 v0c′(Y0c′t−

∑S
s=1 ∑Cs

c=1 Wc′sc(λ1, λ2)Ysct)2].

The first penalty discourages deviations from the assigned aggregate weights of the

dGSC-AA estimator, while the second controls variation across disaggregated treated units.

Because the optimal values λ∗1 , λ∗2 depend on unobservable quantities such as out-of-sample

prediction error, the penalty parameters must be estimated from the data, effectively treating

aggregation as a tuning-parameter problem rather than a fixed modeling choice.
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The mlSC estimator nests all four SC variants introduced in Section 4 as limiting cases. As

λ1, λ2 → ∞, it reduces to the classical SC (dGSC-AA) estimator based solely on aggregated

data. Setting λ1 → ∞, λ2 = 0 recovers the dGSC-DA estimator, λ1 = 0, λ2 → ∞ yields

the dGSC-AD estimator, and setting both penalties to zero recovers the fully disaggregated

dGSC estimator.

Many penalization schemes have been proposed for the SC estimator in practice based

on an L1 penalty, L2 penalty or a combination of both (see, e.g., Doudchenko and Imbens,

2016; Amjad, Shah, and Shen, 2018; Chernozhukov, Wüthrich, and Zhu, 2018; Arkhangelsky

et al., 2021; Ben-Michael, Feller, and Rothstein, 2021; Abadie and L’Hour, 2021; Athey et al.,

2021). In contrast to these approaches, the mlSC penalty is motivated by selecting the optimal

aggregation level itself. Its ridge-type form ensures that even with generalized population

weights, the estimator converges to the standard SC variants as the penalties grow large. Al-

ternative penalty forms, for example, those based on conditional variance terms are possible,

but they do not guarantee convergence to the classical SC estimator in the large-penalty limit.

While the full mlSC framework allows flexible penalization across both treated and con-

trol units, in this paper I focus on the case where the treated unit remains aggregated. This

corresponds to setting λ2 = ∞, enforcing aggregation across treated units while allowing the

estimator to flexibly learn the optimal degree of aggregation among control units through

λ1. Under this restriction, the weight matrix Wc′sc collapses to a vector, ωsc ∈ R∑S
s=1 Cs , and

the mlSC optimization problem simplifies to:

arg min
ωsc∈R

∑S
s=1 Cs

T0

∑
t=1

(Y0t −
S

∑
s=1

Cs

∑
c=1

ωscYsct)
2

+ λ1 · σ2
y ·

S

∑
s=1

Cs

∑
c=1

(ωsc − vscws)2

s.t.
S

∑
s=1

Cs

∑
c=1

ωsc = 1 and ωsc ≥ 0 ∀c, s 6= 0,

(5.2)

where ws = ∑Cs
c=1 ωsc. The additional scaling factor σ2

y ensures the penalty is on the same
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scale as the loss function while the penalty parameter λ is scale invariant.

This specification serves as my preferred estimator going forward. Figure 3 illustrates

how the (oracle) mlSC adapts the penalty parameter λ∗ to the characteristics of the data in a

real-world application.

(a) Classical SC estimator dominates the
dGSC-AD estimator.

(b) dGSC-AD estimator dominates the classi-
cal SC estimator.

Figure 3: RMSE as a function of λ for the oracle mlSC estimator using semi-synthetic data
based on a subset of units for log wages data. Based on Ssim = 1000 simulation runs. For
more details, see Section 6. Dashed blue line refers to the dGSC-AD estimator, dashed green
line to the classical SC estimator and the dashed black line to the end of the λ-grid used in
the optimization procedure.

5.2 Penalty Parameter

To obtain a feasible mlSC estimator in practice, I propose two approaches for selecting the

penalty parameter, λ1: cross-validation over time and a model-based heuristic. Estimating

λ is necessary because the true counterfactual outcome for the aggregated treated unit post-

treatment is unobserved.

Cross-Validation over Time. The first approach provides an estimate for λ1 via leave-

tcv-out cross-validation for the aggregated treated unit. In practice, I select pre-treatment

periods immediately preceding treatment, T0 − tcv, as the holdout set.7 The rationale for

7It is not strictly necessary to use periods right before treatment; one could choose older periods or multiple
non-contiguous periods as well.
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using periods just before treatment is that they are likely to resemble the post-treatment pe-

riods, making them a good proxy for out-of-sample prediction. Formally, the cross-validated

penalty is chosen as

λ̂∗1 = arg min
λ

T0

∑
t=T0−tcv

τ̂0t(λ)
2,

where τ̂0t(λ) = Y0t−∑S
s=1 ∑Cs

c=1 ω̂sc(λ)Ysct denotes the estimated treatment effect in the hold-

out pre-treatment periods and the weights ω̂sc(λ) are obtained by solving Equation 5.2. This

approach performs well when T0 is sufficiently large, providing enough pre-treatment peri-

ods for cross-validation. 8

Heuristic for λ. An practical alternative to cross-validation over time, especially when

only a few pre-treatment periods are available, is a model-based heuristic. The heuristic is

derived from the optimal λ∗ in a stylized hierarchical random effects model under a simple

scenario with T = S = Cs = 2. It is given by

λ̂∗1 = 2
σ̂2

ε

σ̂2
y

,

where σ̂2
ε is the estimated variance of the error term and σ̂2

y is the estimated variance of the

outcome Y.9 Dividing by σ̂2
y ensures the heuristic is scale-invariant. Intuitively, this approach

imposes a larger penalty when the data are noisier. For further derivation and justification

of this heuristic, see Appendix B.

6 Simulation Results

I evaluate the performance of the dGSC and the proposed mlSC estimators through a series

of semi-synthetic simulations based on four empirical datasets. This design allows me to

compare the estimators under assignment mechanisms that resemble realistic policy inter-

8Alternatively, one could perform cross-validation over units. This requires an additional exchangeability
assumption across units and is computationally expensive.

9Several approaches can be used to estimate these variances. Here, I use a simplified hierarchical latent
factor model as described in Appendix G, taking the average estimated variance across all other aggregated
units except for the treated unit. The same procedure is applied to estimate σ̂2

y .
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ventions. Across these simulations, I find that disaggregating the control units is the main

driver of performance gains in the dGSC estimators. By contrast, disaggregating the treated

unit yields, at most, modest improvements over either the classical SC or the dGSC-AD es-

timator. The benefits of control unit disaggregation are particularly pronounced in settings

with low noise levels. Overall, the oracle mlSC consistently achieves the lowest estimation

error, while the feasible mlSC, using the heuristic or cross-validation over time, outperforms

the classical SC and generally matches or exceeds the performance of dGSC-AD. The mlSC

provides the greatest improvement over either estimator in settings where the noise level is

such that the classical SC and dGSC-AD perform similarly.

6.1 Simulation Set-Up

I follow the simulation framework of Arkhangelsky et al. (2021) to evaluate estimator perfor-

mance. In particular, I create semi-synthetic placebo studies using four real-world datasets:

county- and state-level unemployment rates and weekly log wages from the U.S. Bureau of

Labor Statistics (BLS), smoking rates from the Behavioral Risk Factor Surveillance System

(BRFSS), and country- and continent-level log(GDP) from the Penn World Table. Details

on data construction and dataset descriptions are provided in Appendix C. The simulation

design has two main components: outcome construction and treatment assignment.

For the outcomes, I assume a hierarchical latent factor model:

Ysct = α′sβt︸︷︷︸
Lagg

st

+ η′scβt︸ ︷︷ ︸
Ldisagg

sct

+εsct, εsct
i.i.d.∼ N (0, σ2

ε ),

where Lagg
st captures the aggregated systematic component and Ldisagg

sct captures deviations

at the disaggregate level. For the simulations, I assume that aggregated units are simple

averages of its disaggregated units, i.e. vsc = 1
Cs

. Latent components are obtained from a
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rank-three factor model fit to the observed data:

L = arg min
L:rank(L)=3

∑
sct
(Ysct − Lsct)

2,

with Ysct denoting the observed outcome. Aggregated and disaggregated components are

then defined as:

Lagg
st =

1
Cs

Cs

∑
c=1

Lsct

Ldisagg
sct = Lsct − Lstate

st ∀s

Residuals esct = Ysct− Lsct are used to estimate the error variance σ2
ε . I evaluate estimator

performance using root mean squared error (RMSE), appropriate for the null-effect setting

where τ = 0.

Unlike in randomized designs (see, e.g., Bertrand, Duflo, and Mullainathan, 2004; Bottmer

et al., 2024), treatment assignment in this simulation study is modeled to reflect the obser-

vational settings where SC estimators are typically applied. For the three U.S. state-level

outcomes, treatment is assigned following historical adoption patterns of minimum wage

and gun control laws (see Arkhangelsky et al., 2021). For the international data, countries

are grouped into six continents, with assignment based on financial market development

and industrialization. 10 In all cases, treatment is assigned to a single aggregated treated

unit (Ntr = 1) in a way that correlates with the systematic components, mimicking policy

decisions that respond to latent economic conditions.

Formally, the treatment indicator is

Wsct = Ds1t>T0 , Ds ∼ Bernoulli(πs), πs =
exp{φ(αs + η̄s)}

1 + exp{φ(αs + η̄s)}
,

where φ is estimated via logistic regression of observed treatment adoption on the systematic

10The systematic components explain roughly 14–30% of variation in treatment status for all assignment
processes.
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aggregated component.

6.2 Performance of the dGSC Estimators

I first examine the value of disaggregation in SC estimators. As a benchmark, I also report

results for difference-in-differences (DiD) estimators, using both aggregated and disaggre-

gated data—a common alternative to SC methods when disaggregated data is available. In

the main text, I present results using financial market–based assignment for the international

data and minimum wage laws for the state-level data. Results for alternative treatment

assignments, including random assignment, are provided in Appendix D. Table 3 reports

the RMSEs and bias across the two main designs for the classical SC, dGSC-AD, dGSC-DA,

dGSC, and DiD estimators.

Disaggregation of Control Units. First, I focus on disaggregating only the control units.

The results show that disaggregation improves out-of-sample performance for all but one

data set (unemployment rate). For the Penn table log(GDP) data, which contains few aggre-

gated units, a substantial portion of the improvement comes from decreased bias, suggesting

that imperfect pre-treatment fit played a significant role in the performance. Differences in

performance across data sets are largely driven by the underlying noise level in the disag-

gregated data. To further explore the impact of noise on estimator performance, I artificially

increase the noise level and analyze the results in Section 6.4.

Disaggregation of the Treated Unit. Next, I examine the effect of disaggregating the

treated unit. The dGSC estimator, which fully disaggregates both the treated and control

units, performs comparably to the classical SC or dGSC-AD estimator, and in some cases

slightly outperforms them, with improvements ranging from 3% to 5%. However, for most

data sets, the dGSC estimator performs similarly to the best-performing among the classical

SC and dGSC-AD estimators. The dGSC-DA estimator, which disaggregates only the treated

unit, consistently yields the worst performance. These results indicate that disaggregating

the treated unit alone provides limited benefits; the primary gains from disaggregation arise

from disaggregating the control units.
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Benchmark DiD Estimators. Finally, the DiD estimators perform poorly overall—consistently

worse than the dGSC-AD estimator and, in most cases, also worse than the classical SC. The

DiD estimators exhibit substantial bias for outcomes such as the smoking rates. Incorpo-

rating disaggregated data into DiD offers minimal improvements, which are small relative

to the gains achieved by dGSC estimators. This pattern reinforces that the main advantage

of disaggregated data is realized within SC-type estimators, where weights are flexibly and

data-drivenly fitted to outcome trends, unlike in DiD.

Table 3: Simulation results for all dGSC and DiD estimators: RMSE and Bias.

Classical SC dGSC-AD dGSC-DA dGSC DiD DiD
(aggregate) (disaggregate)

RMSE

Assn.: Financial markets

Penn table log(GDP) 0.384 0.035 0.409 0.052 0.152 0.153

Assn.: Min. wage

Unemployment rate 0.089 0.095 0.139 0.084 0.135 0.134
Log wages 0.124 0.038 0.253 0.037 0.128 0.127

Smoking rate 0.153 0.056 0.217 0.063 0.295 0.315

Bias

Assn.: Financial markets

Penn table log(GDP) 0.209 -0.000 0.204 0.013 0.020 0.033

Assn.: Min. wage

Unemployment rate 0.004 -0.003 0.053 -0.000 0.018 0.012
Log wages 0.030 0.003 0.119 0.002 0.006 -0.004

Smoking rate -0.070 -0.012 -0.126 -0.031 -0.156 -0.196

All results are based on Ssim = 1, 000 simulation runs. Ntr = 1 and Tpost = 1. Outcomes are normalized to have
mean zero and unit variance. Estimators: classical SC estimator: aggregated data for treated and control; dGSC-
AD: aggregated data for treated, disaggregated data for control; dGSC-DA: disaggregated data for treated,
aggregated data for control; dGSC: disaggregated data for treated and control; DiD (aggregate): difference-in-
differences using aggregated data; DiD (disaggregate): difference-in-differences using disaggregated data.
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6.3 Performance of the Multi-Level SC Estimator

I next evaluate the performance of the mlSC estimator. Table 4 compares the classical SC,

dGSC-AD, mlSC with heuristic penalty selection (as derived in Section 5.2), and the oracle

mlSC (trained using post-treatment outcomes) in terms of RMSE and bias for the two main

designs. Three key conclusions emerge from this analysis.

First, the oracle mlSC establishes a performance frontier. The oracle mlSC generally out-

performs both the classical SC and dGSC-AD estimators. For the Penn Table log(GDP) and

log wages data, the oracle mlSC performs comparably to dGSC-AD, indicating that full dis-

aggregation of control units is the most effective approach for these data sets. For the other

data sets, the oracle mlSC achieves gains over the best-performing among the classical SC

and dGSC-AD estimators, ranging from 9% to 18%.

Second, the feasible mlSC estimators closely track the oracle frontier. Both the heuris-

tic and cross-validated mlSC estimators perform near the oracle benchmark. When disag-

gregation meaningfully improves fit, the heuristic mlSC outperforms the classical SC and

dGSC-AD estimators for all but one data set, where performance is essentially equivalent.

The cross-validated mlSC exhibits similar patterns, performing on par with dGSC-AD for

the Penn Table log(GDP) and log wages data, and outperforming the dGSC estimators for

the remaining two data sets.

Thirdly, the oracle mlSC generally exhibits reduced bias relative to the classical SC es-

timator. Compared to dGSC-AD, however, there is no consistent ranking in bias, reflecting

that bias reductions from mlSC depend on the underlying data structure and the degree of

aggregation.

6.4 Performance of Estimators under Different Noise Regimes

Building on the stylized example in Section 3.2 and motivated by the varying magnitude of

performance improvements across data sets, I next examine how the benefit of using disag-

gregated data depends on its noise level. Using the same simulation setup as in Section 6.1, I
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Table 4: Simulation results for four real data sets: RMSE and Bias.

mlSC mlSC mlSC Classical SC dGSC-AD
(oracle) (heuristic) (CV time)

RMSE

Assn.: Financial markets

Penn table log(GDP) 0.033 0.033 0.038 0.384 0.035

Assn.: Min. wage

Unemployment rate 0.081 0.083 0.083 0.089 0.095
Log wages 0.035 0.035 0.040 0.124 0.038

Smoking rate 0.046 0.046 0.049 0.153 0.056

Bias

Assn.: Financial markets

Penn table log(GDP) 0.001 -0.000 0.003 0.209 -0.000

Assn.: Min. wage

Unemployment rate -0.001 -0.001 -0.005 0.004 -0.003
Log wages 0.002 0.002 0.004 0.030 0.003

Smoking rate -0.009 -0.009 -0.010 -0.070 -0.012

All results are based on Ssim = 1, 000 simulation runs. Ntr = 1 and Tpost = 1. Outcomes are normalized to have
mean zero and unit variance. In bolt: RMSE closest to oracle. Estimators: mlSC: multi-level SC estimator; classi-
cal SC estimator: aggregated data for treated and control; dGSC-AD: aggregated data for treated, disaggregated
data for control.

estimate a rank-three factor model and the idiosyncratic error variance, though for the state-

level data sets I now use a subset of the data (see Appendix C and E for details). I then inflate

the estimated error variance by a multiplier m, so that in each simulated dataset the variance

equals m · σ̂2
ε . Increasing m raises the relative magnitude of idiosyncratic noise compared

to the signal, which enlarges the convex hull due to noise rather than meaningful variation,

thereby increasing the risk of overfitting. Consequently, I expect the classical SC estimator to

outperform dGSC-AD when the noise level is high.

Figure 4 reports results across different values of m for all four data sets. For the state-

level data sets, I focus on the minimum-wage-law assignment, as alternative assignments
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(a) Penn Table: log(GDP) (b) Unemployment rate

(c) Log wages (d) Smoking rate

Figure 4: Varying noise multiplier m · σ2
ε for data sets.

Estimators: mlSC: multi-level SC estimator; classical SC estimator: aggregated data for treated and control;
dGSC-AD: aggregated data for treated, disaggregated data for control. Subset of states, S = 20 with C̄s ≈ 20,
for the CPS unemployment rate and log wages and BRFSS smoking rate.

produced similar patterns. As m increases, the classical SC estimator improves relative to

dGSC-AD and for the unemployment rate data set, it even surpasses dGSC-AD. The point

at which the two lines cross depends not only on the absolute noise level, but also on the

ratio of signal contained in the disaggregated data to the noise. Appendix C provides a de-

composition of the aggregate, disaggregate, and noise components. The Penn Table data has

the smallest noise component, while the smoking rate and log wages data have comparable

noise levels. The unemployment rate exhibits substantially higher noise, explaining why the

crossing occurs at a relatively low m; for the other data sets, the crossing point is not observed

even at the largest multiplier considered (m = 14).
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Across all noise scenarios, the oracle mlSC estimator consistently outperforms both the

classical SC and dGSC-AD estimators. The largest gains occur when the classical SC and

dGSC-AD estimators perform similarly, highlighting the ability of mlSC to adaptively lever-

age disaggregation depending on the signal-to-noise trade-off.

7 Theoretical Results

In this section, I analyze the trade-off between the classical SC and the disaggregated SC

estimator (dGSC-AD) and characterize the properties of the mlSC estimator. I introduce a

hierarchical latent factor model that extends the canonical framework of Abadie, Diamond,

and Hainmueller (2010) by explicitly modeling within-aggregate heterogeneity and allow-

ing for random factor loadings. The model decomposes post-treatment mean-squared error

(MSE) into components reflecting flexibility versus noise sensitivity, clarifying when disag-

gregation improves or worsens MSE relative to aggregation. Building on this decomposition,

I show that the mlSC estimator recovers the classical SC solution when pre-treatment fit is

perfect.

7.1 Hierarchical Latent Factor Model

I adopt the standard linear latent factor model typically used to justify synthetic control

methods (see, e.g. Abadie, Diamond, and Hainmueller, 2010) to incorporate the disaggre-

gate level data and mimic the hierarchical structure of the data.

Assumption 1 (Potential outcomes). Potential outcomes for disaggregated units c within aggre-

gated units s at time t are given by

Ysct(0) = µ′scβt + εsct = (αs + ηsc)
′ βt + εsct

Ysct(1) = τsct + Ysct(0);

where βt ∈ Rk denotes the k unknown latent factors, specific to each time period t. αs ∈ Rk denotes

their unknown aggregate loadings, ηsc ∈ Rk the disaggregated deviations and εsct is an idiosyncratic
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error term. The factor loadings are time-invariant.

The potential outcomes for the aggregate level can be derived by taking weighted aver-

ages. I treat the unknown factor loadings as random instead of fixed as is mostly assumed

in the literature, with the exception of Imbens and Viviano (2023) and Athey and Imbens

(2025). The factors and treatment assignment are still assumed to be fixed. For part of my

theoretical analysis, I will condition on the random draws for the factor loadings since, for

each observed sample, those will be fixed as well, even when I increase the number of time

periods. Assumption 2 summarizes these assumptions.

Assumption 2 (Stochastic components). Factor loadings are random:

αs
i.i.d.∼ (0, σ2

α Ik), ηsc
i.i.d.∼ (0, σ2

η Ik), εsct
i.i.d.∼ (0, σ2

ε ).

Factors β1, ..., βT are fixed over time.

Remark Note that this framework allows for a degree of agnosticism about the error term,

e.g. instead of being purely stochastic following Assumption 2, it can include a systematic

component γsc, e.g. εsct = γsc + usct. This interpretation absorbs nonlinear functions of the

loadings ft(αs + ηsc) into the “error.” If γsc carries signal, e.g. is time-invariant and predictive

out-of-sample, fitting this component is not purely overfitting, which favors disaggregated

estimators.

7.2 Characterizing the Trade-Off under the Hierarchical Linear Latent Fac-

tor Model

In this section, I analyze the mean-squared error (MSE) of the classical SC and the dGSC-AD

estimator in the hierarchical linear latent factor model. The MSE can be decomposed into four

components that translate into a trade-off between the increase in flexibility and overfitting

as opposed to the standard textbook bias-variance trade-off. I discuss each component and

the implications for the comparison of the classical SC and dGSC-AD estimator in detail.

31



7.2.1 Mean–Squared Error Decomposition

For any dGSC estimator ŵR with R ⊆ RdGSC−AD solving Equation 4.1, define the post-

treatment prediction error as

E := Y0T(0)− Ŷ0T(0) = Y0T(0)−Y′−0TŵR,

where Y−0T collects the pre-treatment outcomes for all disaggregated control units. Let M =

(µ11, µ12, . . . , µS,CS)
′ ∈ R∑s Cs·k denote the matrix of factor loadings for the disaggregated

control units and µ0 = α0 +
1

C0
∑C0

c′=1 η0c′ the aggregated factor loadings for the aggregated

treated unit, capturing both the aggregate and averaged disaggregate components. Define

the oracle SC weights within a general restricted weight setR ⊆ RdGSC−AD as

w∗R = arg min
w∈R
||µ0 −M′w||22,

where w∗R ∈ R∑S
s=1 Cs .

Lemma 1 (Error decomposition). Under Assumption 1, the post-treatment error decomposes as

E = (µ0 −M′w∗RdGSC−AD)
′βT︸ ︷︷ ︸

oracle bias

+ (M′(w∗RdGSC−AD − w∗R)
′βT︸ ︷︷ ︸

restriction bias

+ (M′(w∗RdGSC−AD − ŵR))′βT︸ ︷︷ ︸
estimation error

+ (ε0T − ε′−0,TŵR)︸ ︷︷ ︸
post-treatment noise

.

Lemma 1 shows a decomposition of the out-of-sample error of the dGSC estimator with

R ⊆ RdGSC−AD. The total error consists of four components. First, the oracle bias reflects the

irreducible discrepancy between the treated unit’s true factor loadings and those spanned

by the disaggregated control units. Second, the restriction bias captures the additional bias

introduced by constraining the dGSC’s feasible set of weight matrices (e.g., using aggregated

rather than disaggregated control units). Third, the estimation error reflects the difference

between the oracle SC weights in the restricted feasible set and the estimated weights based

on noisy pre-treatment outcomes instead of the true factor loadings. The last component is

the post-treatment noise which arises purely from idiosyncratic shocks after treatment.
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Building on this decomposition, Proposition 2 separates the expected mean-squared er-

ror (MSE) into bias and variance components.

Proposition 2 (MSE decomposition). Under Assumptions 1–2 and using Lemma 1, conditional

on {αs, ηsc}, the expected MSE is

E[E2|αs, ηsc] = E[(µ0 −M′w∗RdGSC−AD)
′βT + (M′(w∗RdGSC−AD − w∗R))

′βT + (M′(w∗R − ŵR))′βT|αs, ηsc]
2︸ ︷︷ ︸

Bias2

+ ‖βT‖2
2M′Var(ŵR)M + σ2

ε ∗ (
1

C0
+ E[‖ŵR‖2

2|αs, ηsc])︸ ︷︷ ︸
Variance

,

where the cross-term vanishes because ŵsc is independent of post-treatment shocks ε ·,T.

The proof is given in Appendix A.3. The estimation error contributes both to the bias

through the deviation w∗R−E[ŵR] and to the variance via sampling variability in ŵR. Hence,

the MSE decomposes into a bias and a variance component.

7.2.2 MSE Comparison between the Classical SC and dGSC-AD Estimator

The MSE comparison between the classical SC and the dGSC-AD estimator does not corre-

spond to a standard bias–variance trade-off. Instead, the relevant tension is between estima-

tor flexibility, captured by the oracle and restriction bias, and noise sensitivity, reflected in the

estimation error and post-treatment variance. While having access to disaggregated data for

the dGSC-AD estimator allows for a more complex model, fitting on noisy pre-treatment out-

comes and operating under convexity constraints means that this additional flexibility does

not necessarily translate into lower bias. Likewise, the increased model complexity does not

automatically imply larger variance: the dGSC-AD estimator can distribute weights across a

broader set of control units, effectively averaging over more idiosyncratic errors and thereby

potentially even lowering variance.

Bias. The bias arises from three sources: (i) oracle bias, (ii) restriction bias, and (iii) es-

timation error. The oracle bias is common to all estimators. This term vanishes if an oracle
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synthetic control exists at the disaggregate level. The restriction bias is specific to constrained

estimators like the classical SC estimator since it quantifies the loss from aggregation. A dis-

aggregated control pool that contains rich variation (large σ2
η) allows for closer alignment be-

tween the treated unit and the convex hull of the control units. This rich variation increases

the dGSC-AD’s flexibility compared to the classical SC. Specifically, the bias is strictly posi-

tive when the disaggregated controls can exactly reproduce the treated unit’s factor loadings,

but aggregation makes this replication impossible.

In contrast, the estimation error tends to be larger for estimators using disaggregated

data, i.e. larger for dGSC-AD than classical SC, due to the hierarchical structure of the data

and the i.i.d. nature of the idiosyncratic error term. The bias coming from the estimation

error is due to overfitting the noise. However, specific sample realizations can reverse this

ranking, particularly when the observed noise leads to weight assignments that prevent per-

fect replication of the treated unit. To illustrate this scenario, consider the best-case setting

for the classical SC estimator in which it can perfectly match the treated unit. This case pro-

vides a clean benchmark since both oracle estimators for the respective feasible sets achieve

perfect replication. Thus, the oracle and restriction bias terms drop out, isolating the estima-

tion error’s contribution to the bias. Even in this favorable scenario, for certain realizations of

the noise, the dGSC-AD estimator may exhibit smaller estimation error than the classical SC

(see Figure 5). In essence, when noise prevents perfect replication, the dGSC-AD estimator’s

flexibility can reduce estimation error relative to the aggregated approach. Importantly, this

estimation error occurs in the projected factor loading space, not directly in the weight space,

highlighting that smaller bias in factor space need not correspond to smaller deviations in in-

dividual weights.

Variance. The variance component arises from both uncertainty in the estimated weights

and post-treatment noise. There is generally no clear ranking between the post-treatment

variance of the classical SC estimator and the dGSC-AD estimator. In a standard bias–variance

framework, variance typically increases with model complexity, but this monotonicity does

not necessarily hold here. For a given pair of disaggregated weights wsc and aggregated
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Y1

Y2

AZ1 AZ2

NY1

NY2

AZ

NY

CA

ĈA
SC

ĈA
dGSC−AD

(a) Pre-treatment outcomes. Convex hull
spanned by outcomes on county- and state-
level. Synthetic controls ĈA for dGSC-AD
(orange) and classical SC (violet).

µ

AZ1 AZ2 NY1 NY2

AZ NYCA

µ̂dGSC−AD µ̂SC

(b) Factor loadings. Convex "hull" for
true factor loadings on county- and state-
level. Approximated factor loadings with SC
weights from dGSC-AD (orange) and classi-
cal SC (violet).

Figure 5: Estimation error for treated unit CA. One outcome realization. dGSC-AD estimator
can have a lower estimation error than classical SC.

ws = ∑Cs
c=1 wsc, the disaggregated weights wsc always has a larger norm, however, the rel-

evant weights for the MSE comparison are obtained from separate optimization problems,

where the weights are not guaranteed to be equal to the aggregated up disaggregted weights

wsc, so this guarantee no longer holds.

Under convexity constraints, the variance attributable to the estimated weights ranges

from
[ 1

∑s Cs
, 1
]

for the dGSC-AD estimator and from
[ 1

∑s Cs
, 1

mins Cs

]
for the classical SC esti-

mator. Hence, the maximum possible variance of the dGSC-AD estimator is typically larger,

while the minimum is identical.

Finally, post-treatment variance can be decomposed into a within-aggregate component,

E[∑S
s=1 ∑Cs

c=1(ŵsc − 1
Cs

∑Cs
c′=1 ŵsc′)

2|αs, ηsc], and a between-aggregate component,

E[∑S
s=1

1
Cs
(∑Cs

c′=1 ŵsc′)
2|αs, ηsc].11 Aggregation reduces the within-aggregate component to

zero, but the effect on the between-aggregate component is ambiguous. Hence, the classical

SC estimator has a lower within-aggregate variance than the dGSC-AD estimator. Overall,

11Note that we specifically indexed ŵR here as ŵsc to be clear about the sums.
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when the dGSC-AD estimator distributes weight more evenly across many disaggregated

units while the classical SC concentrates weight on a small number of aggregated units the

dGSC-AD estimator can exhibit lower post-treatment variance (see Figure 6).

Y1

Y2

AZ1

AZ2

NY1

NY2

NY3

AZ NYCA

ĈA
SC

ĈA
dGSC−AD

(a) Pre-treatment outcomes. Synthetic con-
trols from classical SC (violet) and dGSC-AD
(orange) estimator. The dGSC-AD estimator
replicates the treated unit perfectly.

Classical SC dGSC-AD

ŵsc [0.4, 0.4, [0.335, 0.183,
0.2
3 , 0.2

3 , 0.2
3 ] 0.104, 0.322, 0.057]

‖ŵsc‖2
2 ≈ 0.33 ≈ 0.263

(b) Weight vectors. Classical SC and dGSC-
AD weights and corresponding weight terms.

Figure 6: Weight structure comparison of classical SC and dGSC-AD estimator.

7.3 Guarantees for mlSC Estimator

I first show that under the standard assumptions of the classical SC estimator, the mlSC es-

timator always recovers the classical SC solution. This demonstrates that, when the classical

SC estimator is favorable in practice—i.e., when pre-treatment fit is already good—the mlSC

estimator returns the same estimates without any loss of efficiency or bias. To formalize this

result, I introduce two assumptions. The first is the standard no-anticipation assumption,

and the second is perfect pre-treatment fit, which is used in Abadie, Diamond, and Hain-

mueller (2010) to derive bias properties of the classical SC estimator.

Assumption 3 (Perfect pre-treatment fit for classical SC). There exist weights ws such that Y0t =

∑S
s=1 wsYst for all t ≤ T0, where ws minimizes the classical SC objective in Equation 3.1.

Proposition 3 (Recovery of Classical SC). Under Assumption 3, the mlSC and classical SC opti-

mization problems have identical solutions, ŵmlSC = ŵSC, implying τ̂mlSC = τ̂SC.
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The proof, provided in Appendix A.4, relies on reformulating the mlSC objective in terms

of aggregate-specific parameters and deviations, weighted appropriately. Overall, this obser-

vation reinforces that the mlSC estimator is a superset of the classical SC estimator. Perfect

pre-treatment fit is crucial here, as it ensures that the optimization over aggregate-specific

weights and deviations separates cleanly, so the mlSC penalties do not alter the solution.

Proposition 3 highlights an important property of the mlSC framework: it inherits all

favorable properties of the classical SC estimator whenever the standard assumptions from

Abadie, Diamond, and Hainmueller (2010) hold. Consequently, when pre-treatment fit is al-

ready excellent using aggregated data, the mlSC estimator will naturally select the classical

SC solution. Conversely, if pre-treatment fit is poor, the mlSC estimator can gain by par-

tially or fully disaggregating the control units, exploiting any distinguishable signal in the

disaggregated data, without violating the classical SC simplex constraints on the weights. In

other words, the potential value of mlSC arises precisely in settings where the classical SC

assumptions are relaxed in practice—namely, when perfect pre-treatment fit is unattainable.

8 Two Applications of the Multi-Level SC Estimator: Revis-

iting Minnesota’s Cigarette Tax and Iowa’s Minimum Wage

Increase

I illustrate the practical use of the mlSC estimator in two empirical settings. The goal of

these applications is not to provide new causal estimates, but rather to demonstrate how

the estimator adapts to the trade-offs between aggregated and disaggregated data, and how

applied researchers can leverage this flexibility. In each example, I compare county- and

state-level analyses and benchmark mlSC against classical SC, dGSC-AD, and standard DiD

estimators. The first application revisits Deng and Zheng (2023), and the second follows

Callaway and Sant’Anna (2021).
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8.1 Minnesota’s Cigarette Tax

I revisit Deng and Zheng (2023), who study the effects of Minnesota’s 2013 cigarette and e-

cigarette sales tax increases. In the paper, the authors focus on the e-cigarette sales tax on

e-cigarettes and cigarette sales and prices. Following Amato, Boyle, and Brock (2015), I focus

on the impact of the cigarette sales tax on cigarette sales. The policy increased Minnesota’s

cigarette sales tax to $1.75 per pack (from $1.60 to $3.35 per pack) in July 2013. Treatment is

thus assigned at the state level.

My analysis uses NielsenIQ Retail Scanner Data (provided through Kilts Center for Mar-

keting, University of Chicago), which records weekly sales at participating grocery stores. I

construct outcomes at both the county- and state-level, taking average units sold per grocery

store as the main outcome. To focus on the incremental effect of Minnesota’s July 2013 tax,

I restrict the donor pool to states without similar policy changes in 2013, yielding S = 47

control states covering 1378 counties.12 I use all data in 2013, thus T = 52 weeks in total,

with T0 = 26 pre-treatment weeks.

Figure 7 shows the deviation of counterfactual predictions from observed outcomes,

∆ = YMN − ŶMN, for all estimators. The pre-treatment fit (Figure 7b) highlights that the

DiD estimators exhibit poor pre-treatment fit, signaling potential parallel trends violations.

Classical SC improves fit over DiD, and the dGSC-AD estimator achieves nearly perfect pre-

treatment fit. The two feasible mlSC estimators adapt between these two dGSC extremes,

looking closer to the dGSC-AD than classical SC estimator. Overall, using disaggregated

data reduces the pre-treatment RMSE by 97.7-99.9% compared to the classical SC.13

Weight patterns further illustrate the trade-off: the dGSC-AD estimator assigns positive

weight to 35 states, with a total of 120 counties (average C̄s = 3.43 per state), while classi-

cal SC assigns weight to only 11 states covering 288 counties, concentrating mostly in the

Midwest. For more details on the weights for the two estimators, see Appendix I.1.

12Note that this data set includes substantially less counties than the total number of counties in the US due
to the coverage of the participating stores.

13The DiD estimators, on the contrary, have an increased pre-treatment RMSE compared to the classical SC
(approximately 2.5-2.8 times higher).
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(a) All time periods (b) Pre-treatment fit

Figure 7: Treated State: MN in July 2013: Outcome Data and Predicted Values from SC and
DiD estimators. Outcomes are given relative to YMN,t (∆ = YMN,t − ŶMN,t)

Estimators: classical SC estimator: aggregated data for treated and control; mlSC: multi-level SC estimator with
penalty parameter estimate λ̂; DiD (aggregate): difference-in-differences using aggregated data; DiD (disaggre-
gate): difference-in-differences using disaggregated data.

Table 5 reports the estimated treatment effects. While all methods indicate a reduction

in sales, the magnitudes differ substantially, underscoring the sensitivity of SC estimates to

the level of aggregation. Figure 8 shows the cross-validation curve used to select the penalty

parameter λ. The cross-validation errors would favor the aggregation approach of Deng and

Zheng (2023) when restricted to a choice between county- and state-level data. The mlSC

estimator, in contrast, selects an intermediate penalty between the fully aggregated and fully

disaggregated extremes. This choice yields distinct estimates. Moderate aggregation appears

to stabilize noisy county-level outcomes while still leveraging disaggregated variation, and

can therefore have meaningful implications for policy conclusions.

8.2 Iowa’s Minimum Wage Increase

Following Callaway and Sant’Anna (2021), I also apply my method to evaluate the effect of

a minimum wage increase on teen employment. Unlike their multi-state design, I focus on a

single treated state, namely Iowa, during the period from 2001:Q2-2007:Q2. During this time,

the federal minimum wage remained fixed at $5.15 per hour. In 2007:Q2, Iowa implemented

a state-level minimum wage increase to $6.20, providing a clean setting to study the local
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Table 5: Estimated treatment effects for MN from July-December 2013. Average cigarette
sales per grocery store is Ȳ = 816.48.

Estimator Estimated Treatment Effect
classical SC -122.52
dGSC-AD -99.66

mlSC (heuristic) -113.30 (λ̂ = 0.0463)
mlSC (cv time; tcv = 5) -113.41 (λ̂ = 0+)

DiD (aggregate) -94.12
DiD (disaggregate) -91.85

Notes: λ̂ = 0+ means that λ̂ is positive but very small. Estimators: classical SC estimator: aggregated data
for treated and control; mlSC: multi-level SC estimator with penalty parameter estimate λ̂; DiD (aggregate):
difference-in-differences using aggregated data; DiD (disaggregate): difference-in-differences using disaggre-
gated data.

Figure 8: Total RMSE curve as a function of λ for the tcv = 5 hold out pre-treatment periods
preceding treatment.

Estimators: classical SC estimator: aggregated data for treated and control; dGSC-AD: aggregated data for
treated, disaggregated data for control

labor market impact of this policy shift. Hence, treatment is assigned at the state level. While

the authors use a difference-in-differences set-up and leave the outcome data at the county-

level to estimate the aggregate effect, I explore whether aggregated data yielded more precise

estimates, given the interest in the treatment effect of the policy on Iowa as a whole.

The outcome variable is the teen employment rate. This variable is measured quarterly

using data from the Quarterly Workforce Indicators (QWI) compiled by Dube and Zipperer
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(2015), which is given at the county-level.14 I restrict the donor pool to control states that did

not increase their minimum wage above the federal level during the sample period and for

which county-level data is available. This results in a donor pool of S = 13 control states,

comprising a total of 1141 counties, observed over T = 25 quarters (T0 = 24 pre-treatment

periods).

Figure 9 shows deviations of predicted outcomes from observed values for all estimators.

Pre-treatment fit (Figure 9b) is poor for classical SC and DiD, with the classical SC performing

the worst. Because Iowa’s teenage employment rate exceeds that of most donor states in

many quarters, the convexity constraints of classical SC make it difficult to match Iowa’s

trajectory. This is precisely the type of setting where disaggregation can provide substantial

gains. The dGSC-AD and mlSC estimators achieve near-perfect pre-treatment fit, reducing

the pre-treatment RMSE by 99.7-99.9% compared to the classical SC.15

(a) All time periods (b) Pre-treatment fit

Figure 9: Treated State: Iowa in 2007 Q2: Outcome Data and Predicted Values from SC and
DiD estimators. Outcomes are given relative to YIA,t (∆ = YIA,t − ŶIA,t)

Estimators: classical SC estimator: aggregated data for treated and control; mlSC: multi-level SC estimator with
penalty parameter estimate λ̂; DiD (aggregate): difference-in-differences using aggregated data; DiD (disaggre-
gate): difference-in-differences using disaggregated data.

14The teen employment rate is computed as the number of employed teens divided by the teen population in
each county. I winsorize the variable at the 0.5% level to reduce the influence of extreme outliers and counteract
measurement error.

15The DiD estimators reduce the pre-treatment RMSE by around 60% compared to the classical SC.
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In terms of weights, the dGSC-AD places positive weight on 11 states, with a total of

115 counties (C̄s = 10.45 per state), while classical SC assigns weight to two states only.

However, those two states contain 133 counties in total, suggesting that, despite the state-

level aggregation, the number of contributing counties in both approaches is roughly similar.

For more details on the weights for the two estimators, see Appendix I.2.

Table 6: Estimated treatment effects for IA in 2007 Q2. Outcome: Teen Employment Rate (in
%). Average teen employment rate is 14.57%

Estimator Estimated Treatment Effect
classical SC -0.089
dGSC-AD -0.179

mlSC (heuristic) -0.077(λ̂ = 0.4855)
mlSC (cv time; tcv = 4) -0.075 (λ̂ = 0.0001)

DiD (aggregate) -0.744
DiD (disaggregate) -0.743

Estimators: classical SC estimator: aggregated data for treated and control; mlSC: multi-level SC estimator with
penalty parameter estimate λ̂; DiD (aggregate): difference-in-differences using aggregated data; DiD (disaggre-
gate): difference-in-differences using disaggregated data.

Table 6 presents estimated treatment effects. All estimators predict negative effects on

teen employment, but magnitudes vary, just like in the first application. The mlSC cross-

validation curve (Figure 10) again guides the choice of λ: it selects a λ̂∗ close to dGSC-AD in

terms of RMSE, suggesting that disaggregated control data is particularly informative here,

while some aggregation might still improve stability. Overall, the dGSC-AD estimator beats

the classical SC estimator for the hold out pre-treatment data set, suggesting that the cross-

validation error echoes the aggregation approach in Callaway and Sant’Anna (2021) when

restricted to a choice between county- and state-level data. This application illustrates how

the choice of aggregation can change the estimated effect of increasing minimum wage laws

in Iowa, a question of direct relevance to labor economics.
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Figure 10: Total RMSE curve as a function of λ for the tcv = 5 hold out pre-treatment periods
preceding treatment.

Estimators: classical SC estimator: aggregated data for treated and control; dGSC-AD: aggregated data for
treated, disaggregated data for control

9 Extending the Setting: Disaggregating the Treated Unit

While the simulation results in Section 6 show that disaggregating the treated unit offers

little gain in estimator performance when the target is an aggregate-level effect, such disag-

gregation substantially broadens the scope of possible analyses. For example, Bottmer (2025)

demonstrates that disaggregating the treated unit allows for generalization of treatment ef-

fect estimates in classical SC settings, particularly when the setting is limited to a single

observation. In this paper, I further show that disaggregating the treated unit enables the

study of treatment effect heterogeneity, aligning with the goals of the distributional synthetic

control literature (see, e.g., Chen, 2020; Gunsilius, 2023). Thus, whereas the value of disag-

gregating control units derives mainly from a statistical trade-off, the value of disaggregating

the treated unit lies in expanding the set of estimands rather than improving conventional

predictive performance.
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9.1 Set-Up

In the panel data setting considered in this paper, disaggregating the treated unit makes

it possible to estimate unit-level treatment effects rather than only the aggregate average.

Unlike the distributional synthetic control literature, which characterizes the distribution of

effects across units (e.g., Chen, 2020; Gunsilius, 2023), this framework allows direct inference

at the disaggregate level. Such granularity can reveal heterogeneous responses and facilitate

mechanism analysis instead of recovering an aggregate-level distribution.

As shown in Section 2, the aggregate effect of interest can be written as the average of the

unit-level effects,

τ0t =
C0

∑
c′=1

τ0c′t.

The dGSC estimator solves for synthetic control weights separately for each treated subunit,

yielding

τ̂dGSC
0t =

1
C0

C0

∑
c′=1

τ̂0c′t, where τ̂0c′t = Y0c′t −
S

∑
s=1

Cs

∑
c=1

Ŵc′scYsct.

Thus, dGSC estimator directly provides estimates of county-level treatment effects.

9.2 Simulation Results for Multi-Level SC Estimator with Fully Disaggre-

gated Data

I next extend the simulation study of Section 6 to evaluate the mlSC estimator with both hier-

archical penalties. I report results for the oracle mlSC (trained on post-treatment outcomes)

and the cross-validated version.

Table 7 shows the bias and RMSE results for the full mlSC estimator, including both

penalty terms. As the two relevant benchmark estimators, I include the classical SC and the

dGSC estimator. Overall, the results show that using both penalties yields gains relative to

the better of the classical SC and the dGSC estimator, when the oracle penalty parameters

are used. These gains translate to the feasible cross-validated mlSC as well. However, when

inspecting Table 8, which compares the mlSC estimator using one penalty (leaving the treated
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unit aggregated) to that using both penalties (fully disaggregating all units), I find that their

performances are very similar.16 This pattern indicates that disaggregating only the control

units, as is the focus of this paper, captures most of the attainable efficiency gains.

Table 7: Simulation results for four real data sets: RMSE and Bias. Subset of states: S = 11

mlSC mlSC Classical SC dGSC
(oracle) (CV time)

RMSE

Assn.: Financial markets

Penn table log(GDP) 0.033 0.038 0.384 0.052

Assn.: Min. wage

Unemployment rate 0.128 0.135 0.139 0.148
Log wages 0.035 0.039 0.146 0.042

Smoking rate 0.078 0.082 0.135 0.104

Bias

Assn.: Financial markets

Penn table log(GDP) 0.001 0.002 0.209 -0.000

Assn.: Min. wage

Unemployment rate -0.013 -0.01 0.014 0.012
Log wages 0.001 0.003 0.074 0.002

Smoking rate 0.017 0.011 0.025 0.037

All results are based on Ssim = 1, 000 simulation runs. Ntr = 1 and Tpost = 1. Outcomes are normalized to have
mean zero and unit variance. In bolt: RMSE closest to oracle. Estimators: mlSC: multi-level SC estimator with
two penalty terms; classical SC estimator: aggregated data for treated and control; dGSC: disaggregated data
for treated and control.

9.3 Disaggregating the Treated Unit in Iowa’s Minimum Wage Increase

Finally, I revisit the second empirical application, the effect of Iowa’s increase in minimum

wage on teenage employment, allowing for county-level heterogeneity. Figure 11 shows

16Note that RMSE for the double mlSC (cv time) estimator is slightly worse for two data sets, indicating that
a second penalization term introduces more noise for the feasible estimator than having to estimate only one
penalty parameter.
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Table 8: Simulation results for four real data sets: RMSE and Bias. mlSC estimators with
single and double penalty. Subset of states: S = 11

mlSC mlSC mlSC mlSC
(oracle) (CV time) (oracle) (CV time)
double double single single

RMSE

Assn.: Financial markets

Penn table log(GDP) 0.033 0.038 0.033 0.038

Assn.: Min. wage

Unemployment rate 0.128 0.135 0.128 0.134
Log wages 0.035 0.039 0.035 0.039

Smoking rate 0.078 0.082 0.078 0.079

Bias

Assn.: Financial markets

Penn table log(GDP) 0.001 0.002 0.001 -0.000

Assn.: Min. wage

Unemployment rate -0.013 -0.010 -0.013 -0.010
Log wages 0.001 0.003 0.001 0.004

Smoking rate 0.017 0.011 0.017 0.010

All results are based on Ssim = 1, 000 simulation runs. Ntr = 1 and Tpost = 1. Outcomes are normalized to
have mean zero and unit variance. Estimators: mlSC double: multi-level SC estimator with two penalty terms
as in Equation 5.1; mlSC single: multi-level SC estimator with single penalty term, keeping the treated unit
aggregated as in Equation 5.2.

the estimated county-level effects. Figure 11a maps the estimates, which display no clear

geographic clustering, while Figure 11b plots their distribution. The dGSC estimator yields

a state-level effect of τ̂dGSC = −0.061, closely matching the mlSC estimate. Consistent with

this modest average effect, the histogram is tightly centered near zero, though a few counties

exhibit more extreme responses.
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(a) Map of Iowa’s counties including the esti-
mated treatment effects

(b) Histogram of county-level treatment ef-
fects

Figure 11: Treated state: Iowa in 2007 Q2: Estimated treatment effects by county.

10 Conclusion

In this paper, I investigate the value of disaggregated data in synthetic control applications

and provide guidance for applied researchers working with multiple levels of aggregation.

I develop a framework that nests different SC variants used in practice and transforms the

choice of aggregation from an a priori modeling decision into a data-driven optimization

problem. I introduce the multi-level SC estimator, which implements this approach by incor-

porating disaggregated data directly into the analysis and leveraging the additional variation

in control units to improve aggregate treatment effect estimation. While disaggregating the

treated unit does not necessarily enhance estimation accuracy, it enables researchers to ex-

amine new objects of interest, such as treatment effect heterogeneity. Together, these results

demonstrate how researchers can use disaggregated data in synthetic control settings to im-

prove estimation precision and broaden the range of policy-relevant estimands.
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Appendices

Appendix A Proofs

A.1 Proof of Proposition 1

LetR ⊆ RdGSC−AD. I show that the optimization problem for the dGSC estimators imposing

R ⊆ RdGSC−AD is equivalent to the classical SC objective function. I start with the optimiza-

tion problem for the dGSC estimators. Note that, by enforcing the constraints on the weights

given inR, the weights Wc′sc become equivalent for each disaggregated treated unit c′, mak-

ing the weight matrix independent of c′, thus Wc′sc = W·sc. I will use this observation in the

rewriting of the optimization problem:

arg min
W·sc∈R

T0

∑
t=1

C0

∑
c′=1

v0c′(Y0c′t −
S

∑
s=1

Cs

∑
c=1

W·scYsct)
2

= arg min
W·sc∈R

T0

∑
t=1

C0

∑
c′=1

v0c′

(
Y2

0c′t − 2 ·Y0c′t

S

∑
s=1

Cs

∑
c=1

W·scYsct + (
S

∑
s=1

Cs

∑
c=1

W·scYsct)
2
)

= arg min
W·sc∈R

T0

∑
t=1

( C0

∑
c′=1

v0c′ Y2
0c′t −

C0

∑
c′=1

2 · v0c′ Y0c′t

S

∑
s=1

Cs

∑
c=1

W·scYsct +
C0

∑
c′=1

v0c′ (
S

∑
s=1

Cs

∑
c=1

W·scYsct)
2
)

= arg min
W·sc∈R

T0

∑
t=1

( C0

∑
c′=1

v0c′ Y2
0c′t − 2 ·

S

∑
s=1

Cs

∑
c=1

W·scYsct ·
C0

∑
c′=1

v0c′Y0c′t︸ ︷︷ ︸
Y0t

+(
S

∑
s=1

Cs

∑
c=1

W·scYsct)
2

C0

∑
c′=1

v0c′︸ ︷︷ ︸
=1

)

= arg min
W·sc∈R

T0

∑
t=1

(
− 2 ·

S

∑
s=1

Cs

∑
c=1

W·scYsct ·Y0t + (
S

∑
s=1

Cs

∑
c=1

W·scYsct)
2
)

= arg min
W·sc∈R

T0

∑
t=1

(
− 2 ·

S

∑
s=1

Cs

∑
c=1

W·scYsct · Y0t + (
S

∑
s=1

Cs

∑
c=1

W·scYsct)
2
)

= arg min
W·sc∈R

T0

∑
t=1

(
− 2 ·

S

∑
s=1

Cs

∑
c=1

W·scYsct · Y0t + (
S

∑
s=1

Cs

∑
c=1

W·scYsct)
2 + Y2

0t

)

= arg min
W·sc∈R

T0

∑
t=1

(Y0t −
S

∑
s=1

Cs

∑
c=1

W·scYsct)
2.
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This optimization problem is, up to a reindexing of donor units, equivalent to the classical

SC problem given in Equation 3.1, where the treated unit is kept at the aggregate level.

A.2 Proof of Lemma 1

Under Assumption 1, the post-treatment error can be written as

E = (µ′0βT + ε0T)− (M′ŵ)′βT − ε′−0,Tŵsc.

Add and subtract the oracle synthetic control M′wd∗
sc and best-in-class synthetic control M′wBIC∗

sc

to obtain

E = (µ0 −M′wd∗
sc )
′βT + (M′(wd∗

sc − wBIC∗
sc )′βT + (M′(wBIC∗

sc − ŵsc))
′βT + (ε0T − ε′−0,Tŵsc).

A.3 Proof of Proposition 2

Apply Lemma 1 to the general dGSC estimator withR ⊆ RdGSC− AD. Moreover, note that

the estimation error contributes to the total MSE via two parts: (i) bias from (M′(wBIC∗
sc −

E[ŵsc|αs, ηsc]))′βT and (ii) variance from (M′(E[ŵsc|αs, ηsc]− ŵsc))′βT. Calculating the total

MSE yields

E[E2|αs, ηsc] = E[(µ0 −M′wd∗
sc )
′βT + (M′(wd∗

sc − wBIC∗
sc ))′βT + (M′(wBIC∗

sc − ŵsc))
′βT|αs, ηsc]

2

+ ‖βT‖2
2M′Var(ŵsc)M + σ2

ε ∗ (
1

C0
+ E[‖ŵsc‖2

2|αs, ηsc])

+ 2 ∗ Cov((M′ŵsc))
′βT, (ε0T − ε′−0,Tŵsc)).

Let

Cov((M′ŵsc)
′βT, (ε0T − ε′−0,Tŵsc)) = −Cov((M′ŵsc)

′βT, ε′−0,Tŵsc)

= −E[(M′ŵsc)
′βT ∗ ε′−0,Tŵsc] + E[(M′ŵsc)

′βT] ∗E[ε′−0,Tŵsc]

= −E[(M′ŵsc)
′βT ∗E[ε−0,T|ŵsc]

′ŵsc]
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+ E[(M′ŵsc)
′βT] ∗E[E[ε−0,T|ŵsc]

′ŵsc]

= −0 + E[(M′ŵsc)
′βT] ∗ 0

= 0

Plugging this result into the MSE above yields the final result.

A.4 Proof of Proposition 3

Step 1: Reparameterization

The mlSC estimator can be rewritten in terms of deviations from the aggregated outcome

and aggregated weights. Define the aggregated weight for state s from the mlSC weight

as wagg
s = ∑Cs

c=1 wsc and the deviations from the average county-level weight within each

state as usc = wsc − vscwagg
s . Similarly, define deviations from the aggregated outcome as

Zsct = Ysct − Yst. By construction, ∑c usc = ∑c vscZsct = 0. Using these definitions, the

synthetic control estimate can be rewritten as

S

∑
s=1

Cs

∑
c=1

wscYsct =
S

∑
s=1

[wagg
s Yst +

Cs

∑
c=1

uscZsct] &
S

∑
s=1

Cs

∑
c=1

(wsc − vscwagg
s )2 =

S

∑
s=1

Cs

∑
c=1

u2
sc.

With this reparametrization, the mlSC optimization problem becomes:

arg min
ws∈RS,usc∈R

∑Cs
c=1 Cs

T0

∑
t=1

(Y0t −
S

∑
s=1

ws︸︷︷︸
=wagg

s

Yst −
S

∑
s=1

Cs

∑
c=1

uscZsct)
2

+ λ1

S

∑
s=1

Cs

∑
c=1

u2
sc

s.t.
S

∑
s=1

ws︸︷︷︸
=wagg

s

= 1,
S

∑
s=1

Cs

∑
c=1

usc = 0 and ws ≥ 0 ∀s 6= 0,

(A.1)

where ws is a vector for aggregate specific weights and usc are the within-aggregate devia-

tions. The objective can be decomposed into three components: (i) a term depending only on

ws, (ii) a term depending only on usc, and (iii) a cross-term.
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Step 2: Candidate solution

Consider the candidate solution ws = w∗s , which achieves perfect pre-treatment fit under

Assumption 3, and usc = 0 ∀s, c, i.e., all counties in a state have equal weights. I now proceed

to show that this candidate solution achieves the unique minimum for this optimization

problem.

Step 3: Check constraints

The candidate solution satisfies all constraints: (1) ∑S
s=1 w∗s = 1, w∗s ≥ 0 hold because

w∗s is the solution to the classical SC problem, Equation 3.1, which imposes exactly those

constraints and (2) ∑S
s=1 ∑Cs

c=1 usc = ∑S
s=1 ∑Cs

c=1 0 = 0, hence also satisfying the constraint on

the uscs.

Step 4: Evaluate the objective at the candidate

Let L(ws, usc) be the mlSC objective function. Substituting usc = 0 ∀s, c gives

L(w∗s , 0) =
T0

∑
t=1

(Y0t −
S

∑
s=1

w∗s Yst)
2 + 0 =

T0

∑
t=1

(Y0t −
S

∑
s=1

w∗s Yst)
2.

Under perfect pre-treatment fit (Assumption 3), L(w∗s , 0) = 0. The general mlSC objective can

be decomposed into two terms: (1) the pre-treatment fit, (Y0t−∑S
s=1 wsYst−∑S

s=1 ∑Cs
c=1 uscZsct)2,

and (2) the penalty, λ1 ∑S
s=1 ∑Cs

c=1 u2
sc. Since both terms are quadratic and λ1 ≥ 0, this implies

that the objective function for any candidate solution w, u is positive, L(w, u) ≥ 0. Hence,

since L(w∗s , 0) = 0, the candidate solution obtains the minimum that the objective function

can take on. Moreover, since both terms are convex, the minimum is unique.

Step 5: Connection to classical SC

With usc = 0, the mlSC optimization problem reduces to

arg min
ws∈RS,usc∈R

∑Cs
c=1 Cs

T0

∑
t=1

(Y0t −
S

∑
s=1

wsYst)
2

s.t.
S

∑
s=1

ws = 1, and ws ≥ 0 ∀s 6= 0,

(A.2)
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which is exactly equivalent to the classical SC optimization problem (Equation 3.1).

Appendix B Derivation of the Optimal λ∗ in a Stylized Model

This appendix derives the optimal penalty parameter λ∗ in a stylized setting with two ag-

gregated units (S = 2) and two disaggregated units within each aggregated unit (Cs = 2).

Aggregated unit 0 is treated and aggregated unit 1 serves as the donor unit. Both aggregated

outcomes are simple averages of their disaggregated components.

Step 1: Set-Up and Reparameterization

Let the two disaggregated units in the donor aggregated unit 1 receive weights (w, 1−w)

since the convexity constraint requires that the weights sum to 1. I ignore the positivity

constraints for now. When using only aggregated data, the solution places equal weight on

each disaggregated donor unit, w = 1
2). Write the deviation from the aggregate-only solution

as

w =
1
2
− ∆, 1− w =

1
2
+ ∆.

The mlSC objective can then be expressed as

arg min
w

(Y01 − wY111 − (1− w)Y121)
2 + λ

(
(w− 1

2
)2 + (1− w− 1

2
)2
)

⇐⇒ arg min
∆

(d̄1 − ∆(d11))
2 + λ2 ∆2,

where d̄t = Y0t − Y1,t and dst = Ys2t − Ys1t are defined as the between-aggregated units and

within-aggregated unit differences.

Step 2: First-Order Condition

Differentiating and solving for ∆ gives

−2(d̄1 − ∆d11) · d11 + 4λ∆ = 0

⇐⇒ ∆̂ =
d̄1d11

d2
11 + 2λ
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Step 3: Out-of-Sample Mean-Squared Error

The optimal λ minimizes the expected out-of-sample mean squared error (MSE),

E[MSE] = E[(d̄2 − ∆̂ d12)
2] = E[(d̄2 −

d̄1d11

d2
11 + 2λ

d12)
2].

To make further progress, I condition on information at period t = 1: F1.

Step 4: Data-Generating Process and Conditional Distributions Assume

Ysct = αs + ηsc + εsct,

where αs
i.i.d.∼ N (0, σ2

α), ηsc
i.i.d.∼ N (0, σ2

η) and εsct
i.i.d.∼ N (0, σ2

ε ).

Define shorthand:

ā = 2 σ2
α + σ2

η + σ2
ε , b̄ = 2σ2

α + σ2
η , a = 2 σ2

η + 2 σ2
ε , b = 2 σ2

η .

The relevant conditional distributions needed for the expected MSE are

d̄2|d̄1, and d12|d11
.

Using Normality and independence, I find that

d̄2

d̄1

 ∼ N(
0

0

 ,

2 σ2
α + σ2

η + σ2
ε 2σ2

α + σ2
η

2σ2
α + σ2

η 2 σ2
α + σ2

η + σ2
ε

).

Similarly, d12

d11

 ∼ N(
0

0

 ,

2 σ2
η + 2 σ2

ε 2 σ2
η

2σ2
η 2 σ2

η + 2 σ2
ε

).
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Combining these, the following conditional distributions are then

d̄2|d̄1 ∼ N (d̄1
b̄
ā

,
ā2 − b̄2

ā
)

d12|d11 ∼ N (d11
b
a

,
a2 − b2

a
).

Step 5: Expected Conditional MSE

Conditional on F1,

E[(d̄2 −
d̄1 d11

d2
11 + 2 λ

d12)
2|F1] = (d̄1

b̄
ā
− d̄1d11

d2
11 + 2λ

d11
b
a
)2

︸ ︷︷ ︸
E[·|F1]2

+
ā2 − b̄2

ā
+

(
d̄1d11

d2
11 + 2λ

)2 a2 − b2

a︸ ︷︷ ︸
Var(·|F1)

= d̄2
1

(
(

b̄
ā
−

d2
11

d2
11 + 2λ

b
a
)2 +

d2
11

(d2
11 + 2λ)2

a2 − b2

a

)
+ c

= c + c′ · 1
(d2

11 + 2λ)2

(
(

b̄
ā
· (d2

11 + 2λ)− d2
11

b
a
)2 +

a2 − b2

a
d2

11

)
,

where c and c′ are constants independent of λ. Thus,

E[(d̄2 −
d̄1 d11

d2
11 + 2 λ

d12)
2|F1] = c + c′ · 1

(d2
11 + 2 λ)2

(
(d2

11(
b̄
ā
− b

a
) + 2

b̄
ā

λ)2 +
a2 − b2

a
d2

11

)
(B.1)

Step 6: Optimal λ∗

Define

u(x) =
1

(d2
11 + 2λ)2

u′(x) = − 4
(d2

11 + 2λ)3

v(x) = (d2
11(

b̄
ā
− b

a
) + 2

b̄
ā

λ)2 +
a2 − b2

a
d2

11 v′(x) = 4
b̄
ā
(d2

11(
b̄
ā
− b

a
) + 2

b̄
ā

λ)
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Differentiating with respect to λ and solving yields

∂E[MSE|F1]

∂λ
= − 4c

(d2
11 + 2λ)3

{
(d2

11 (
b̄
ā
− b

a
)︸ ︷︷ ︸

=x

+2
b̄
ā

λ)2 +
a2 − b2

a
d2

11

}

+ c · 4
(d2

11 + 2λ)2
b̄
ā
(d2

11(
b̄
ā
− b

a
) + 2

b̄
ā

λ) = 0

⇐⇒ d4
11x2 − a2 − b2

a
d2

11 +
b̄
ā

d4
11x

+ λ(−4d2
11x

b̄
ā
+ 2

b̄
ā

d2
11x + 2(

b̄
ā
)2d2

11) = 0

Rearranging yields

λ =
d4

11x2 + 12−b2

a d2
11 −

b̄
ā d4

11x

2( b̄
ā )

2d2
11 − 2d2

11x b̄
ā

=
a2 − b2 − bd2

11(
b̄
ā −

b
a )

2 b̄
ā b

Overall, the optimal λ is

λ∗ =
a2 − b2 − b d2

11 (
b̄
ā −

b
a )

2 b̄
ā b

.

Note that

b̄
ā
− b

a
=

2σ2
α + σ2

η

2 σ2
α + σ2

η + σ2
ε
−

2σ2
η

2 σ2
η + 2 σ2

ε

=
4σ2

ασ2
ε

(2σ2
α + σ2

η + σ2
ε )(2σ2

η + 2σ2
ε )

Substituting in the variances for a, b, ā, b̄ for the rest of the expression yields

λ∗ =
8 σ2

ησ2
ε + 4 σ2

ε − 2 σ2
η d2

11
4 σ2

α σ2
ε

(2σ2
α+σ2

η+σ2
ε )(2σ2

η+2σ2
ε )

4 σ2
η

2 σ2
α+σ2

η

2 σ2
α+σ2

η+σ2
ε

=
2 σ2

ε +
σ2

ε

σ2
η
− 2 d2

11
σ2

α σ2
ε

(2σ2
α+σ2

η+σ2
ε )(2σ2

η+2σ2
ε )

2 σ2
α+σ2

η

2 σ2
α+σ2

η+σ2
ε

.

Step 7: Practical Approximation
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The leading term 2σ2
ε in the numerator often dominates, particularly when within-aggregate

heterogeneity (σ2
η) is large. The remaining terms involve factor variances and cross-terms

(such as σ2
ε /σ2

η and the d11 interaction) that reflect higher-order structure and are typically

smaller or more difficult to estimate reliably. For practical implementation, using 2σ2
ε pro-

vides a conservative and easy-to-compute proxy for the penalty parameter.

Appendix C Placebo Data Set Construction

The four real-world data sets used in my simulation study come from three publicly avail-

able repositories. Unemployment rates and weekly log wages are obtained directly from

the Bureau of Labor Statistics (BLS) website, smoking rates from the Behavioral Risk Fac-

tor Surveillance System (BRFSS), and log GDP from the Penn table log(GDP) World Table.

The BRFSS and Penn World Table data are accessed through the supplementary materials of

Dwyer-Lindgren et al. (2014) and Arkhangelsky et al. (2021), respectively.

Data set size. The data sets fall into two categories based on the level of aggregation.

The first three data sets—unemployment, log wages, and smoking rates—are county-level

panels, where U.S. states serve as their aggregate units. The fourth data set, from the Penn

World Table, is country-level, with continents as the aggregates. These categories differ in

the size of their aggregates, the disaggregate-to-aggregate ratios, and the length of the time

dimension. Table 9 summarizes key size characteristics.

Table 9: Details on size of data sets used for simulation study

Data set Ns Nc T

Penn table log(GDP) Table 6 111 48
Unemployment rate 50 3127 31

Log wages 50 3106 31
Smoking rate 50 3126 17

Data set construction. The aggregated outcomes are computed as weighted averages

of their constituent disaggregated units, with population weights being fixed to vsc. This

ensures internal consistency between aggregated and disaggregated data and matches the
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paper’s theoretical set-up. Counties with incomplete time series are dropped, slightly reduc-

ing the total number of counties from the full set of 3,144.

Factor model characteristics. For each full data set, I estimate a hierarchical linear factor

model with rank 3 and report the relative size of the aggregate factor component, the dis-

aggregate factor component, and the idiosyncratic error. Table 10 reports results for the full

samples; Table 11 shows the same quantities for the restricted samples (S = 20) used in the

simulation experiments.

Table 10: Details on size of the components estimated using the rank = 3 factor model as
used for the simulation study in Section 6.

Data set ||Lagg||F/
√
(∑s Cs) ∗ T ||Ldisagg||F/

√
(∑s Cs) ∗ T σ̂ε

Penn table log(GDP) Table 0.754 0.653 0.075
Unemployment rate 0.692 0.650 0.314

Log wages 0.861 0.499 0.100
Smoking rate 0.713 0.691 0.120

Table 11: Details on size of the components estimated using the rank = 3 factor model as
used for the simulation study in Section 6. Subset of states S = 20.

Data set ||Lagg||F/
√
(∑s Cs) ∗ T ||Ldisagg||F/

√
(∑s Cs) ∗ T σ̂ε

Penn table log(GDP) Table 0.754 0.653 0.075
Unemployment rate 0.589 0.741 0.323

Log wages 0.833 0.547 0.086
Smoking rate 0.554 0.825 0.109

Appendix D Simulations with Other Treatment Assignments

In this section, I report the RMSE and bias of the dGSC, DiD, and mlSC estimators for the CPS

and BRFSS data sets under two additional treatment assignments. The first assigns treatment

based on gun control laws, and the second uses a random assignment. The results closely

mirror those in the main text and reinforce the paper’s main conclusions.
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Table 12: Simulation results for all dGSC and DiD estimators: RMSE and Bias.

Classical SC dGSC-AD dGSC-DA dGSC DiD DiD
(aggregate) (disaggregate)

RMSE

Assn.: Open carry

Unemployment rate 0.067 0.073 0.132 0.058 0.137 0.138
Log wages 0.069 0.026 0.117 0.026 0.138 0.138

Smoking rate 0.098 0.039 0.160 0.038 0.214 0.208

Assn.: Random

Unemployment rate 0.078 0.082 0.121 0.073 0.135 0.134
Log wages 0.069 0.024 0.126 0.025 0.133 0.134

Smoking rate 0.106 0.041 0.161 0.044 0.216 0.221

Bias

Assn.: Open carry

Unemployment rate -0.004 -0.005 0.046 -0.007 -0.032 -0.037
Log wages -0.006 0.000 -0.044 -0.002 -0.004 -0.014

Smoking rate 0.011 0.000 0.056 0.002 0.042 -0.000

Assn.: Random

Unemployment rate -0.000 -0.004 0.038 -0.004 0.002 -0.002
Log wages 0.001 -0.002 -0.020 -0.002 -0.006 -0.016

Smoking rate -0.011 -0.006 0.011 -0.008 -0.010 -0.052

All results are based on Ssim = 1, 000 simulation runs. Ntr = 1 and Tpost = 1. Outcomes are normalized to have
mean zero and unit variance. Estimators: classical SC estimator: aggregated data for treated and control; dGSC-
AD: aggregated data for treated, disaggregated data for control; dGSC-DA: disaggregated data for treated,
aggregated data for control; dGSC: disaggregated data for treated and control; DiD (aggregate): difference-in-
differences using aggregated data; DiD (disaggregate): difference-in-differences using disaggregated data.
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Table 13: Simulation results for four real data sets: RMSE and Bias.

mlSC mlSC mlSC Classical SC dGSC-AD
(oracle) (heuristic) (CV time)

RMSE

Assn.: Open carry

Unemployment rate 0.053 0.056 0.055 0.067 0.073
Log wages 0.022 0.022 0.024 0.069 0.026

Smoking rate 0.030 0.031 0.031 0.098 0.039

Assn.: Random

Unemployment rate 0.070 0.070 0.068 0.078 0.082
Log wages 0.022 0.022 0.025 0.069 0.024

Smoking rate 0.034 0.034 0.036 0.106 0.041

Bias

Assn.: Open carry

Unmployment rate -0.003 -0.003 -0.004 -0.004 -0.005
Log wages -0.000 -0.000 -0.001 -0.006 0.000

Smoking rate 0.002 0.001 0.003 0.011 0.000

Assn.: Random

Unemployment rate -0.001 -0.001 -0.003 -0.000 -0.004
Log wages -0.001 -0.001 -0.002 0.001 -0.002

Smoking rate -0.004 -0.004 -0.004 -0.011 -0.006

All results are based on Ssim = 1, 000 simulation runs. Ntr = 1 and Tpost = 1. Outcomes are normalized to have
mean zero and unit variance. In bolt: RMSE closest to oracle. Estimators: mlSC: multi-level SC estimator; classi-
cal SC estimator: aggregated data for treated and control; dGSC-AD: aggregated data for treated, disaggregated
data for control.
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Appendix E Simulations with Smaller Data Settings

In this section, I examine the robustness of my results to changes in the relative sizes of the

aggregated units S and their disaggregated units Cs. Specifically, I restrict the sample to the

smallest S = 20 states which yields an average of Cs ≈ 20 counties per state. Tables 14 and

15 report the RMSE and bias results.

Across all designs, disaggregation becomes more valuable in this smaller setting. No-

tably, the dGSC-AD estimator now outperforms classical SC for the unemployment rate data

set. However, the magnitude of the gains still varies across designs, indicating that relative

sizes of aggregates and disaggregates are only one of several factors driving the benefits of

disaggregated data. The oracle mlSC estimator delivers further improvements over dGSC-

AD, and the feasible versions continue to track the oracle closely. Finally, the DiD estimators

perform substantially worse than the best dGSC estimators in every scenario, and, consistent

with earlier findings, disaggregation offers no RMSE improvement for DiD.
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Table 14: Simulation results for all dGSC and DiD estimators: RMSE and Bias. Subset of
states (S = 20).

Classical SC dGSC-AD dGSC-DA dGSC DiD DiD
(aggregate) (disaggregate)

RMSE

Assn.: Financial markets

Penn Table: log(GDP) 0.384 0.035 0.409 0.052 0.152 0.153

Assn.: Min. wage

Unemployment rate 0.144 0.130 0.195 0.122 0.272 0.281
Log wages 0.079 0.038 0.166 0.041 0.189 0.200

Smoking rate 0.237 0.099 0.348 0.153 0.354 0.362

Assn.: Open carry

Unemployment rate 0.117 0.108 0.164 0.099 0.204 0.198
Log wages 0.055 0.031 0.158 0.032 0.128 0.125

Smoking rate 0.184 0.063 0.276 0.085 0.238 0.234

Assn.: Random

Unemployment rate 0.123 0.109 0.173 0.105 0.219 0.219
Log wages 0.059 0.033 0.158 0.033 0.142 0.145

Smoking rate 0.183 0.067 0.270 0.096 0.249 0.245

Bias

Assn.: Financial markets

Penn Table: log(GDP) 0.209 -0.000 0.204 0.013 0.020 0.033

Assn.: Min. wage

Unemployment rate -0.006 -0.008 0.038 -0.006 -0.071 -0.118
Log wages -0.010 -0.005 0.031 -0.011 -0.044 -0.093

Smoking rate -0.119 -0.038 -0.078 -0.058 -0.191 -0.222

Assn.: Open carry

Unemployment rate 0.003 0.000 0.015 0.001 0.028 -0.022
Log wages 0.008 -0.002 0.087 -0.003 0.027 -0.024

Smoking rate -0.014 -0.007 -0.033 -0.008 0.009 -0.026

Assn.: Random

Unemployment rate 0.001 0.001 0.022 0.001 -0.002 -0.051
Log wages 0.005 -0.002 0.078 -0.004 0.008 -0.043

Smoking rate -0.027 -0.009 -0.053 -0.014 -0.001 -0.036

All results are based on Ssim = 1, 000 simulation runs. Ntr = 1 and Tpost = 1. Outcomes are normalized to have
mean zero and unit variance. Estimators: classical SC estimator: aggregated data for treated and control; dGSC-
AD: aggregated data for treated, disaggregated data for control; dGSC-DA: disaggregated data for treated,
aggregated data for control; dGSC: disaggregated data for treated and control; DiD (aggregate): difference-in-
differences using aggregated data; DiD (disaggregate): difference-in-differences using disaggregated data.67



Table 15: Simulation results for four real data sets: RMSE and Bias. Subset of states (S = 20).

mlSC mlSC mlSC Classical SC dGSC-AD
(oracle) (heuristic) (CV time)

RMSE

Assn.: Financial markets

Penn Table: log(GDP) 0.033 0.033 0.038 0.384 0.035

Assn.: Min. wage
Unemployment rate 0.117 0.122 0.123 0.144 0.130

Log wages 0.036 0.038 0.040 0.079 0.038
Smoking rate 0.097 0.099 0.098 0.237 0.099

Assn.: Open carry

Unemployment rate 0.093 0.096 0.094 0.117 0.108
Log wages 0.028 0.029 0.030 0.055 0.031

Smoking rate 0.061 0.061 0.063 0.184 0.063

Assn.: Random

Unemployment rate 0.098 0.100 0.101 0.123 0.109
Log wages 0.030 0.030 0.032 0.059 0.033

Smoking rate 0.065 0.066 0.066 0.183 0.067

Bias

Penn Table: log(GDP) 0.001 -0.000 0.003 0.209 -0.000

Assn.: Min. wage

Unemployment rate -0.012 -0.009 -0.011 -0.006 -0.008
Log wages -0.006 -0.008 -0.007 -0.010 -0.005

Smoking rate -0.036 -0.038 -0.041 -0.119 -0.038

Assn.: Open carry

Unemployment rate 0.001 0.003 -0.000 0.003 0.000
Log wages -0.002 -0.003 -0.002 0.008 -0.002

Smoking rate -0.006 -0.006 -0.005 -0.014 -0.007

Assn.: Random

Unemployment rate -0.003 -0.002 -0.004 0.001 0.001
Log wages -0.002 -0.003 -0.002 0.005 -0.002

Smoking rate -0.008 -0.008 -0.011 -0.027 -0.009

All results are based on Ssim = 1, 000 simulation runs. Ntr = 1 and Tpost = 1. Outcomes are normalized to have
mean zero and unit variance. In bolt: RMSE closest to oracle. Estimators: mlSC: multi-level SC estimator; classi-
cal SC estimator: aggregated data for treated and control; dGSC-AD: aggregated data for treated, disaggregated
data for control.
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Appendix F Simulations with AR(2) Error Term

In this section, I assess the robustness of my results to an alternative error structure in the

semi-synthetic data sets. Specifically, I model the error terms εsct as following an AR(2) pro-

cess, as in Arkhangelsky et al. (2021), consistent with evidence in Angrist and Pischke (2009)

and Bertrand, Duflo, and Mullainathan (2004). This modification introduces additional struc-

ture in the errors, which the disaggregated data can exploit.

The main findings remain robust under this alternative specification. Notably, the ben-

efits of incorporating disaggregated data are even larger under the AR(2) error structure,

reflecting the greater information content captured at the disaggregate level.
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Table 16: Simulation results for all dGSC and DiD estimators: RMSE and Bias.

Classical SC dGSC-AD dGSC-DA dGSC DiD DiD
(aggregate) (disaggregate)

RMSE

Assn.: Financial Markets

Penn table log(GDP) 0.382 0.016 0.407 0.047 0.150 0.152

Assn.: Minimum wage

Unemployment rate 0.092 0.086 0.145 0.081 0.132 0.131
Log wages 0.116 0.000 0.247 0.006 0.123 0.122

Smoking rate 0.157 0.073 0.222 0.080 0.293 0.313

Assn.: Open carry

Unemployment rate 0.078 0.074 0.137 0.069 0.147 0.147
Log wages 0.066 0.000 0.115 0.009 0.138 0.138

Smoking rate 0.102 0.052 0.165 0.053 0.219 0.214

Assn.: Random

Unemployment rate 0.090 0.079 0.132 0.078 0.137 0.136
Log wages 0.065 0.000 0.124 0.008 0.131 0.132

Smoking rate 0.109 0.056 0.165 0.060 0.216 0.220

Bias

Assn.: Financial Markets

Penn table log(GDP) 0.207 0.001 0.202 0.015 0.021 0.034

Assn.: Minimum wage

Unemployment rate 0.006 0.025 0.057 0.021 0.019 0.013
Log wages 0.026 0.000 0.117 0.001 0.005 -0.005

Smoking rate -0.069 -0.019 -0.127 -0.042 -0.154 -0.194
Assn.: Open carry

Unemployment rate -0.006 -0.009 0.044 -0.008 -0.032 -0.037
Log wages -0.006 0.000 -0.044 -0.000 -0.004 -0.014

Smoking rate 0.008 -0.001 0.055 0.000 0.041 -0.002

Assn.: Random

Unemployment rate 0.002 0.005 0.037 0.003 0.001 -0.004
Log wages 0.001 0.000 -0.019 0.000 -0.005 -0.015

Smoking rate -0.009 -0.006 0.014 -0.009 -0.009 -0.051

All results are based on Ssim = 1, 000 simulation runs. Ntr = 1 and Tpost = 1. Outcomes are normalized to have
mean zero and unit variance. Estimators: classical SC estimator: aggregated data for treated and control; dGSC-
AD: aggregated data for treated, disaggregated data for control; dGSC-DA: disaggregated data for treated,
aggregated data for control; dGSC: disaggregated data for treated and control; DiD (aggregate): difference-in-
differences using aggregated data; DiD (disaggregate): difference-in-differences using disaggregated data.
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Table 17: Simulation results for four real data sets: RMSE and Bias.

mlSC mlSC mlSC Classical SC dGSC-AD
(oracle) (heuristic) (CV time)

RMSE

Assn.: Financial markets

Penn table log(GDP) 0.016 0.018 0.013 0.382 0.016

Assn.: Minimum wage

Unemployment rate 0.071 0.073 0.076 0.092 0.086
Log wages 0.000 0.003 0.000 0.116 0.000

Smoking rate 0.059 0.059 0.061 0.157 0.073

Assn.: Open carry

Unemployment rate 0.056 0.057 0.058 0.078 0.074
Log wages 0.000 0.002 0.000 0.066 0.000

Smoking rate 0.042 0.043 0.042 0.102 0.052

Assn.: Random

Unemployment rate 0.066 0.066 0.067 0.090 0.079
Log wages 0.000 0.002 0.000 0.065 0.000

Smoking rate 0.046 0.047 0.046 0.109 0.056

Bias

Assn.: Financial markets

Penn table log(GDP) 0.001 0.001 0.002 0.207 0.001

Assn.: Minimum wage

Unemployment rate 0.015 0.019 0.010 0.006 0.025
Log wages -0.000 -0.000 0.000 0.026 0.000

Smoking rate -0.013 -0.012 -0.011 -0.069 -0.019

Assn.: Open carry

Unmployment rate -0.004 -0.004 -0.007 -0.006 -0.009
Log wages 0.000 -0.000 0.000 -0.006 0.000

Smoking rate -0.001 -0.001 0.001 0.008 -0.001

Assn.: Random

Unemployment rate 0.004 0.005 0.003 0.002 0.005
Log wages -0.000 0.000 0.000 0.001 0.000

Smoking rate -0.004 -0.004 -0.004 -0.009 -0.006

All results are based on Ssim = 1, 000 simulation runs. Ntr = 1 and Tpost = 1. Outcomes are normalized to
have mean zero and unit variance. In bold: RMSE closest to oracle. Estimators: mlSC: multi-level SC estimator;
classical SC estimator: aggregated data for treated and control; dGSC-AD: aggregated treated, disaggregated
control. 71



Appendix G Variance Decomposition

In this section, I outline a simple variance decomposition to estimate the noise variance

σ̂2
ε used for the heuristic λ̂ n Section 5.2. I employ a simplified version of the random effects

model from Section 7, omitting the time factors:

Ysct = αs + ηsc + εsct,

where αs
i.i.d.∼ (0, σ2

α), ηsc
i.i.d.∼ (0, σ2

η) and εsct
i.i.d.∼ (0, σ2

ε ).

Under this model, the variance components are estimated as follows:

µ̂sc =
1
T0

T0

∑
t=1

Ysct

α̂s =
1
Cs

Cs

∑
c=1

µ̂sc

η̂sc = µ̂sc − α̂s

Var(ηsc) ≈
1
Cs

Cs

∑
c=1

η̂2
sc

Var(εsct) ≈
1
Cs

Cs

∑
c=1

1
T0

T0

∑
t=1

(Ysct − µ̂sc)
2

Var(αs) ≈ ŝ2
α,

where ŝ is the sample standard deviation. All calculations use pre-treatment data only.

Appendix H Aggregation for the Difference-in-Differences

Estimator

This appendix examines the role of disaggregation in difference-in-differences (DiD) settings.

Using disaggregated data when treatment occurs at the aggregate level is common in applied

work (e.g., Card and Krueger, 1994; Neumark and Wascher, 2001; Baum and Ruhm, 2016).
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While the main text briefly discussed reasons to prefer synthetic control over DiD and disag-

gregation in DiD estimators, here I formally investigate how disaggregation affects the DiD

estimator.

For consistency with the broader DiD literature, I assume a two-way fixed effects speci-

fication for the latent factor model:

Ysct(0) = αs + ηsc + βt + εsct

Ysct(1) = Ysct(0) + τsct

with εsct
i.i.d.∼ N (0, σ2

ε ). Let vsc = 1
Cs
∀s, so aggregated units are simple averages of their

disaggregated units.

In the setup of this paper, the DiD estimator reduces to a simple difference in averages

because only a single unit receives treatment at a given time. Accordingly, we can frame the

problem as a two-group, two-period design: the two groups are (i) the treated unit—either

a single aggregate unit for the aggregated estimator or all its disaggregated sub-units for the

disaggregated estimator—and (ii) the control group; the two periods are pre-treatment, t̄ = 1

(t = 1, ..., T0) and post-treatment t̄ = 2 (t = T0 + 1, ..., T). Let

Ȳsc1 =
1
T0

T0

∑
t=1

Ysct and Ȳsc2 =
1

T − T0 + 1

T

∑
t=T0+1

Ysct

denote the pre- and post-treatment averages, respectively. The time averages for the aggre-

gated outcomes are similarly defined, Ȳs2 and Ȳs1.

With this notation, the two DiD estimators—one using aggregate data and one using

disaggregated data—are defined as follows:

τ̂DiD,agg =

[
Ȳ02 − Ȳ01

]
−
[

1
S

S

∑
s=1

(Ȳs2 − Ȳs1)

]

=

[ C0

∑
c′=1

1
C0

(Ȳ0c′2 − Ȳ0c′1)

]
−
[ S

∑
s=1

Cs

∑
c=1

1
S

1
Cs

(Ȳsc2 − Ȳsc1)

]
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τ̂DiD,disagg =

[ C0

∑
c′=1

1
C0

(Ȳ0c′2 − Ȳ0c′1)

]
−
[ S

∑
s=1

Cs

∑
c=1

1

∑S
s′=1 Cs′

(Ȳsc2 − Ȳsc1)

]

Note that the first part of the DiD estimator is identical for both the aggregate and disag-

gregate versions. Consequently, the difference between the two estimators reduces to

τ̂DiD,agg − τ̂DiD,disagg =
S

∑
s=1

Cs

∑
c=1

(
1

∑S
s′=1 Cs′

− 1
S

1
Cs

)
(Ȳsc2 − Ȳsc1).

This expression shows that if each aggregate unit contains the same number of disaggregated

units, Cs = C ∀s, the two estimators coincide. Otherwise, the estimators differ.

Under the two-way fixed effects model, both estimators are unbiased. Therefore, any

differences in out-of-sample performance in terms of mean squared error arise solely from

differences in variance. Specifically, the MSE difference between the aggregate and disaggre-

gate DiD estimator is determined entirely by the variance of the weighted control units.17

The control-unit variances for the two estimators are then

Control variance, aggregate :

Var(
[ S

∑
s=1

Cs

∑
c=1

1
S

1
Cs

(Ȳsc2 − Ȳsc1)

]
) =

1
S2

S

∑
s=1

Cs

∑
c=1

1
C2

s
Var(∆εsc)

=
1
S2

S

∑
s=1

Cs

∑
c=1

1
Cs

2 · σ2
ε

= 2 · σ2
ε

1
S2

S

∑
s=1

1
Cs

and

Control variance, disaggregate :

17Recall that the first term of the estimator is common to both versions, and, because the states are indepen-
dent, no covariance terms appear in the variance.
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Var(
[ S

∑
s=1

Cs

∑
c=1

1

∑S
s′=1 Cs′

(Ȳsc2 − Ȳsc1)

]
) =

1
(∑s′ Cs′)2

S

∑
s=1

Cs

∑
c=1

Var(∆εsc)

= 2 · σ2
ε

1
∑s′ Cs′

Applying the arithmetic mean–harmonic mean inequality gives

S

∑s
1

Cs

≤ ∑s′ Cs′

S

⇐⇒ 1
S ∑

s

1
Cs
≥ S

∑s′ Cs′

⇐⇒ 1
S2 ∑

s

1
Cs
≥ 1

∑s′ Cs′

Thus, under these assumptions, the disaggregated DiD estimator is (weakly) more effi-

cient than the aggregated estimator. The efficiency gain arises because, when aggregate units

contain different numbers of disaggregated units, the aggregate estimator effectively gives

more weight to smaller units, increasing variance. Disaggregation mitigates this imbalance

and reduces the overall variance of the estimator.

Remark Consider a generalized version of the DiD estimator in which the aggregation weights

for disaggregated units differ from simple averages. The aggregated estimator then becomes

τ̂DiD,agg =

[
∑

c∈C0

v0c(Y0c2 −Y0c1)

]
−
[ S

∑
s=1

Cs

∑
c=1

1
S

vsc(Ysc2 −Ysc1)

]
,

where vsc denotes the weight for disaggregated unit c within aggregated unit s. The disag-

gregated estimator remains the same. This mismatch introduces a bias in the treated term of

the disaggregated estimator relative to the true weighted effect:

τ̂DiD,agg − τ =

(
∑

c∈C0

v0c(ε0c2 − ε0c1)−
S

∑
s=1

Cs

∑
c=1

1
S

1
Cs

(εsc2 − εsc1)

)

τ̂DiD,disagg − τ = ∑
c∈C0

(
1

C0
− v0c)τ0c2 +

(
∑

c∈C0

1
C0

(ε0c2 − ε0c1)−
S

∑
s=1

Cs

∑
c=1

1

∑S
s′=1 Cs′

(εsc2 − εsc1)

)
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The contribution of the control units to variance remains similar to the standard setting, since

the disaggregated estimator still spreads weight approximately equally. As a result, the mean

squared error of the disaggregated estimator now reflects both variance and this additional

bias. Without further assumptions about the structure of the treatment effects within aggre-

gates, we cannot determine in advance whether the aggregated or disaggregated estimator

will perform better.

Remark When the two-way fixed effects model is violated, both aggregated and disaggre-

gated DiD estimators can become biased, potentially misestimating the treatment effect.

Consequently, the mean squared error for each estimator will reflect both a bias and a vari-

ance component. Intuitively, if the model misspecification is largely idiosyncratic across

disaggregated units, the disaggregated estimator is likely to perform better because it can

exploit within-aggregate variation. Conversely, if the misspecification is structured or corre-

lated within aggregates (e.g., within states), the aggregated estimator may be more efficient

and exhibit lower MSE.

Appendix I Additional Details for Empirical Applications

This section provides further information on the counties to which the dGSC-AD estimator

assigns positive weight in the two empirical applications.

I.1 Minnesota’s Cigarette Tax Increase

The dGSC-AD estimator selects 120 counties from 35 control states, distributed as follows:

AL (3), AR (3), CA (1), CO (3), GA (2), IA (5), ID (2), IL (3), IN (6), KS (1), KY (5), MD (1), MI

(6), MO (2), MS (3), MT (1), NC (7), ND (2), NE (2), NM (1), NV (1), NY (2), OH (9), OK (5),

OR (6), PA (6), SC (3), SD (2), TN (1), UT (5), VA (8), VT (1), WI (9), WV (2), WY (1).

By contrast, the classical SC estimator using aggregated data assigns positive weight to

only eleven states, with most weight concentrated in the Midwest: CT (0.04), IL (0.025), KY

(0.01), ME (0.08), MT (0.08), OH (0.20), OR (0.002), RI (0.07), SD (0.29), UT (0.05), and WI

(0.15).
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Table 18 reports the weight vector norms for all SC-type estimators, and Figure 12 visu-

alizes the estimated county-level weights. Overall, both the norms and the maps show that

the feasible mlSC estimators distribute weights across a larger set of counties compared to

the classical SC. In contrast, the dGSC-AD estimator concentrates weight on a small number

of counties, leading to the highest vector norm.

Estimator Weight Vector Norm

Classical SC 0.018
dGSC-AD 0.025

mlSC (heuristic) 0.009
mlSC (cv time) 0.009

Table 18: Weight vector norms for SC-type estimators (on county-level)

I.2 Iowa’s Minimum Wage Increase

The dGSC-AD estimator assigns substantial positive weight to 115 counties across 11 of the

13 control states18. The counties are distributed as follows: GA (8), ID (3), KS (29), LA (3), ND

(7), OK (8), SC (1), SD (14), TN (4), TX (18), and VA (20). On average, C̄s = 10.45 counties per

state receive positive weight. In contrast, the classical SC estimator assigns weight to only

two states: UT (0.775) and KS (0.225).

Table 19 reports the weight vector norms for all SC-type estimators, and Figure 13 visu-

alizes the estimated county-level weights. Similarly to the first application, both the norms

and the maps show that the feasible mlSC estimators distribute weights across a larger set

of counties compared to the classical SC. In contrast, the dGSC-AD estimator concentrates

weight on a small number of counties, leading to the highest vector norm.

18Here, substantial weights are defined as any weight exceeding an equal weighting scheme, i.e., wsc =
1/1141 ≈ 0.009.
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(a) Classical SC (b) dGSC-AD

(c) mlSC (heuristics) (d) mlSC (cv time)

Figure 12: Treated state: MN in July 2013: Weight vectors by control units’ counties.

Estimator Weight Vector Norm

Classical SC 0.022
dGSC-AD 0.030

mlSC (heuristic) 0.005
mlSC (cv time) 0.005

Table 19: Weight vector norms for SC-type estimators (on county-level)
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(a) Classical SC (b) dGSC-AD

(c) mlSC (heuristics) (d) mlSC (cv time)

Figure 13: Treated state: Iowa (purple) in 2007 Q2: Weight vectors for control units’ counties.
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